| Question | OPT A | ОРТ В | | OPT D | 1 3 rd Sem - NSQF - Module 1 - DC Ge
Question | OPT A | ОРТ В | OPT C | OPT D | Ans | Levels | |--|----------------------------------|---|---|--|--|--|---|---|---|------|--------| | Question | OPTA | OPIB | OFIC | OPTD | Question | OFTA | OPTB | OFIC | OPID | Alis | Leveis | | 1 What is the name of the part marked as 'X' in DC generator? | Armature core | Brush | Commutator raiser | | डीसी जनरेटर में 'X' के रूप में चिह्नित भाग
का नाम क्या है? | आर्मेचर कोर | ब्रश | कम्युटेटर रेज़र | कम्यूटेटर खंड | С | 1 | | | | | | | | | | | | | | | 2 What is the name of D.C generator? | Differential long shunt compound | Differential short
shunt compound | Cumulative long shunt compound | Cumulative short shunt compound | D.C जनरेटर का नाम क्या है? | डिफरेंशियल लॉन्ग शंट
कंपाउंड | डिफरेंशियल लघु शंट
यौगिक | संचयी लंबी शंट यौगिक | संचयी लघु शंट यौगिक | A | 1 | | 3 Which rule is used to find the direction of induced emf in D.C generator? | Cork screw rule | Right hand palm rule | Fleming's left hand rule | Fleming's right hand rule | D.C जनरेटर में प्रेरित ईएमएफ की दिशा ज्ञात
करने के लिए किस नियम का उपयोग किया
जाता है? | कॉर्क स्क्रू नियम | दाहिने हाथ की हथेली का
नियम | फ्लेमिंग के बाएं हाथ का
नियम | फ्लेमिंग के दाहिने
हाथ का नियम | D | 1 | | 4 Which formula is used to calculate the | | Generated emf = | Generated emf = | Generated emf = | D.C जनरेटर में उत्पन्न ईएमएफ की गणना
करने के लिए किस सूत्र का उपयोग किया | उत्पन्न ईएमएफ = | उत्पन्न ईएमएफ = | उत्पन्न ईएमएफ = | उत्पन्न ईएमएफ = | С | 1 | | generated emf in D.C generator? | $\frac{\phi ZN}{60}$ Volt | $\frac{\phi ZN}{60} \times \frac{A}{P} \text{Volt}$ | $\frac{\phi ZN}{60} x \frac{P}{A} Volt$ | $\frac{ZN}{60 X \phi} x \frac{P}{A} Volt$ | जाता है? | $\frac{\phi ZN}{60}$ Volt | $\frac{\phi ZN}{60} x \frac{A}{P} Volt$ | $\frac{\phi ZN}{60} x \frac{P}{A} Volt$ | $\frac{ZN}{60 X \phi} x \frac{P}{A} Volt$ | | | | 5 What is the formula to calculate back emf of a D.C motor? | $E_b = \frac{V}{I_a R_a}$ Volts | $E_b = V \times I_a R_a \text{ Volts}$ | $E_b = V - I_a R_a \text{ Volts}$ | $E_b = V + I_a R_a \text{ Volts}$ | इएमएफ की गणना करने का सूत्र क्या
है? | E _b <u>= V</u> वोल्ट
I _a R _a | $E_b = V \times I_a R_a$ वोल्ट्स | $E_b = V - I_a R_a \overline{a}$ | E _b = V + I _a R _a
वोल्ट्स | С | 1 | | 6 What is the name of the part marked 'X' in DCgenerator? | Pole tip | Pole coil | Pole core | Pole shoe | DC Generator में 'X' के रूप में चिह्नित भाग
का नाम क्या है? | ध्रुव की नोक | ध्रुव कुंडली | पोल कोर | पोल शू | D | 1 | | What is the name of the D.C generator? | Shunt generator | Series generator | Compound
generator | Separately excited generator | D.C जनरेटर का नाम क्या है? | शंट जनरेटर | श्रेणी जनरेटर | यौगिक जनरेटर | अलग से उतेजित
जनरेटर | D | 1 | | 8 Which energy is converted into electrical energy by generator? | Heat | Kinetic | Chemical | Mechanical | जनरेटर द्वारा किस ऊर्जा को विद्युत ऊर्जा में
परिवर्तित किया जाता है? | ऊष्मा | गतिशील | रासायनिक | यांत्रिक | D | 1 | | 9 What is the name of D.C generator's field? | Short shunt compound generator | Long shunt compound generator | Differential compound generator | Cumulative
compound
generator | D.C जनरेटर फील्ड का नाम क्या है? | लघु शंट यौगिक जनरेटर | लॉना शंट कंपाउंड जनरेटर | विभेदक यौगिक जनरेटर | संचयी यौगिक जनरेटर | D | 1 | | The same of sa | | | | | | | | | | | | | 10 What is the principle of D.C generator? | Cork screw rule | Fleming's left hand rule | Fleming's right hand rule | Faradays laws of electromagnetic induction | D.C जनरेटर का सिद्धांत क्या है? | कॉके स्क्रू नियम | फ्लेमिंग के बाएं हाथ का
नियम | फ्लेमिंग के दाहिने हाथ
का नियम | फैराडे का विद्युत
चुम्बकीय प्रेरण का
नियम | D | 1 | | 11 What is the formula for dynamically induced emf? | BLV volts | BL sinθ volts | BLV sinθ volts | BLV cosθ volts | गतिशील रूप से प्रेरित ईएमएफ के लिए सूत्र
क्या है? | BLV वोल्ट | BL sin0 वोल्ट | BLV sin0 वोल्ट | BLV cos0 वोल्ट | С | 1 | | 12 Which rule is used to find direction of magnetic field? | Cork screw rule | Right hand palm rule | Fleming's left hand rule | Fleming's right hand rule | चुम्बकीय क्षेत्र की दिशा ज्ञात करने के लिए
किस नियम का उपयोग किया जाता है? | कॉर्क स्क्रू नियम | दाहिने हाथ की हथेली का
नियम | फ्लेमिंग के बाएं हाथ का
नियम | फ्लेमिंग के दाहिने
हाथ का नियम | D | 1 | |---|---|--|---|--|---|--------------------------------|--|---|---|---|---| | 13 What is the name of the part of DC generator? | Stator | Pole core | Pole shoes | Yoke (or) frame | डीसी जनरेटर के भाग का नाम क्या है? | स्टेटर | ध्रुव कोर | पोल शू | योक (या) फ्रेम | D | 1 | | 14 How many parallel paths in duplex lap winding of a 4 pole DC generator? | 4 | 6 | 8 | 12 | 4 पोल डीसी जनरेटर के डुप्लेक्स लैप वाइंडिंग
में कितने समानांतर रास्ते हैं? | 4 | 6 | 8 | 12 | С | 1 | | 15 Name the part of DC generator? | Side end plates | Pole shoe lamination | Commutator
segment | Armature core
lamination | डीसी जनरेटर के भाग का नाम बताइए? | साइड एंड प्लेट्स | पोल शू लेमिनेशन | कम्यूटेटर खंड | आर्मेचर कोर
लेमिनेशन | D | 1 | | 16 How interpoles are connected in a DC generator? | In series with armature | In parallel with armature | In series with shunt field | In parallel with shunt field | डीसी जनरेटर में इंटरपोल कैसे जुड़े होते हैं? | आर्मेचर के साथ श्रृंखला में | आर्मेचर के साथ समानांतर में | शंट फ़ील्ड के साथ
श्रृंखला में | शंट फील्ड के साथ
समानांतर में | A | 2 | | 17 What is the necessity of residual magnetism in a self excited DC generator? | Build up the voltage | Reduce the field current | Reduce armature current | Maintain constant output voltage | एक स्वयं उत्तेजित डीसी जनरेटर में अवशिष्ट
चुंबकत्व की आवश्यकता क्या है? | वोल्टेज का निर्माण करें | फ़ील्ड करंट कम करें | आमेचर करेंट कम करें | नियत आउटपुट
वोल्टेज बनाए रखें | A | 2 | | 18 Which are the two points that the | Resistance between the opposite brushes | Resistance between brush and commutator raiser | Resistance between brush and commutator | Resistance
between brush and
armature conductors | D.C मशीनों में, वे कौन से दो बिंदु हैं जो ब्रश
संपर्क प्रतिरोध को मापते हैं? | विपरीत ब्रश के बीच
प्रतिरोध | ब्रश और कम्यूटेटर राइजर
के बीच प्रतिरोध | ब्रश और कम्यूटेटर के
बीच प्रतिरोध | ब्रश और आर्मेचर
कंडक्टर के बीच
प्रतिरोध | С | 2 | | 19 Which voltage drop is indicated in the portion marked as 'X'? | Full load voltage drop | Armature voltage
drop | Armature reaction drop | Shunt field voltage
drop | किस वोल्टेज ड्रॉप को 'X' के रूप में चिह्नित
किया गया है? | पूर्ण लोड वोल्टेज पात | आर्मेचर वोल्टेज पात | आमेचर रिएक्शन ड्रॉप | शंट फील्ड वोल्टेज
ड्रॉप | С | 2 | | 20 What is the name of the compound generator, if the shunt field is connected in parallel with armature? | Long shunt compound | Cumulative compound | Differential compound | Short shunt compound | कंपाउंड जनरेटर का नाम क्या है, यदि शंट
फ़ील्ड आर्मेचर के साथ समानांतर में जुड़ा
हुआ है? | लॉन्ग शंट कंपाउंड | संचयी यौगिक | विभेदक यौगिक | लघु शंट यौगिक |
D | 2 | | 21 Why the armature core of a DC generator is laminated? | Reduce the copper loss | Reduce the friction loss | Reduce the hysteresis loss | Reduce the eddy current loss | क्यों एक डीसी जनरेटर के आमेचर कोर
पटलित है? | ताम्र हानि को कम करें | घर्षण हानि को कम करें | हिस्टेरिसीस हानि को
कम करें | भंवर धारा हानि को
कम करें | D | 2 | | 22 Why armature resistance of a D.C generator is very low? | Reduce armature current | Reduce armature voltage drop | Run armature with less weight | Reduce the temperature of armature | D.C जनरेटर का आर्मेचर प्रतिरोध बहुत कम
क्यों है? | आमेचर धारा कम करें | आर्मेचर वोल्टेज ड्रॉप को
कम करें | कम वजन के साथ
आर्मेचर चलाएं | आर्मेचर का तापमान
कम करें | В | 2 | | 23 Why the D.C generator should run in clockwise direction only? | Protect brushes from damage | Protect the residual magnetism | Avoid short circuit in armature | Avoid over loading of generator | D.C जनरेटर को घड़ी की दिशा में ही क्यों
चलना चाहिए? | ब्रश को नुकसान से बचाएं | अवशिष्ट चुंबकत्व की रक्षा
करें | आमैचर में शॉर्ट सकिट
से बचें | जनरेटर अतिभारित
करने से बचें | В | 2 | | 24 Why compensating winding is provided in large DC generators? | Connect more loads | Reduce commutation effect | Neutralize armature reaction effect | Increase the efficiency of generator | बड़े डीसी जनरेटर में घुमावदार क्षतिपूर्ति क्यों
प्रदान की जाती है? | अधिक लोड कनेक्ट करें | कम्यूटेशन प्रभाव को कम
करें | आमेचर प्रतिक्रिया प्रभाव
को बेअसर करें | जनरेटर की दक्षता
बढ़ाएं | С | 2 | | What is the reason for DC generator fails to build up voltage? | Loose brush contact | Armature resistance is more | Field resistance is above critical resistance | Prime mover is running at above rated speed | डीसी जनरेटर के वोल्टेज का निर्माण करने में
विफल होने का क्या कारण है? | ढीले ब्रश संयोजन | आमेचर प्रतिरोध अधिक है | फ़ील्ड प्रतिरोध क्रांतिक
प्रतिरोध से ऊपर है | प्राइम मूवर रेटेड गति
से ऊपर चल रहा है | С | 2 | |--|-------------------------------------|---|---|--|--|---------------------------------------|---------------------------------------|--|--|---|---| | What is the name of generator, if its field is connected in parallel with armature? | Shunt generator | Series generator | Compound
generator | Self excited generator | जनरेटर का नाम क्या है, यदि इसका क्षेत्र
आर्मेचर के समानांतर जुड़ा हुआ
है? | शंट जनरेटर | श्रेणी जनरेटर | यौगिक जनरेटर | स्वयं उत्तेजित जनरेटर | A | 2 | | What is the purpose of pole shoe in DC generator? | Reduce the air gap | Increase the field strength | Minimize the magnetic losses | Spread out flux uniformly in the air gap | डीसी जनरेटर में पोल शू का उद्देश्य क्या है? | एयर गैप को कम करें | क्षेत्र की ताकत बढ़ाएं | चुंबकीय हानियों को कम
करें | एयर गैप में समान
रूप से फ्लक्स को
फैलाएं | D | 2 | | What is the function of split rings in DC generator? | Maintain constant voltage | Collects the current unidirectionally | Reduces the voltage drop at brushes | Increases the terminal voltage than rated | डीसी जनरेटर में स्प्लिट रिंग का क्या कार्य है? | निरंतर वोल्टेज बनाए रखें | धारा को एक दिशा में एकत्र
करता है | ब्रश पर वोल्टेज ड्रॉप को
कम करता है | रेटेड की तुलना में
टर्मिनल वोल्टेज
बढ़ाता है | В | 2 | | Which material is used to make brush in generator? | Steel and graphite | Carbon and graphite | Cast iron and graphite | Aluminium and graphite | जनरेटर में ब्रश बनाने के लिए किस सामग्री का
उपयोग किया जाता है? | स्टील और ग्रेफाइट | कार्बन और ग्रेफाइट | ढलवां लोहा और ग्रेफाइट | एल्यूमीनियम और
ग्रेफाइट | В | 2 | | Why DC generators are loosing their residual magnetism? | Heavy short circuit in load | Running without load continuously | Continuous running without break | Change of direction of rotation very often | क्यों डीसी जनरेटर अपने अवशिष्ट चुंबकत्व खो
देते हैं? | भार में भारी शॉर्ट सर्किट | बिना लोड के लगातार चल
रहा है | बिना रुके के लगातार
चलना | रोटेशन की दिशा
अक्सर बदलती है | D | 2 | | How does the magnetic circuit complete through the yoke and poles in a generator? | Field coils | Armature core | Laminated pole core | Winding conductors in armature | एक जनरेटर में योक और ध्रुव के माध्यम से
चुंबकीय सर्किट कैसे पूरा होता है? | क्षेत्र कुंडली | आमैचर कोर | पटलित पोल कोर | आमेचर में वाइंडिंग
कंडक्टर | В | 2 | | Why the terminal voltage decreases if load increases in DC shunt generator? | Because of armature reaction effect | Due to increased in armature resistance | Because of brush
voltage drop
decreases | Due to increased in shunt field inductance | डीसी शंट जनरेटर में लोड बढ़ने पर टर्मिनल
वोल्टेज कम क्यों हो जाता है? | आर्मेचर प्रतिक्रिया प्रभाव
के कारण | आमेचर प्रतिरोध में वृद्धि के
कारण | ब्रश वोल्टेज की वजह से
गिरावट कम हो जाती है | शंट फील्ड प्रेरकत्व में
वृद्धि के कारण | A | 2 | | Which type of DC generator is used for long distance distribution lines? | Shunt generator | Series generator | Differential compound generator | generator | लंबी दूरी की वितरण लाइनों के लिए किस
प्रकार के डीसी जनरेटर का उपयोग किया
जाता है? | शंट जनरेटर | श्रेणी जनरेटर | विभेदक यौगिक जनरेटर | संचयी यौगिक जनरेटर | D | 2 | | Which method is used to improve the insulation resistance in DC generator? | Replacing the brushes frequently | Heating the machine by running periodically | Cleaning the commutator segments regularly | Blowing hot air in to
the machine during
maintenance | डीसी जनरेटर में इन्सुलेशन प्रतिरोध को बेहतर
बनाने के लिए किस विधि का उपयोग किया
जाता है? | ब्रश को बार-बार बदलना | समय-समय पर मशीन को
गर्म करना | नियमित रूप से
कम्यूटेटर सेगमेंट की
सफाई करना | रखरखाव के दौरान
मशीन में गर्म हवा
देना | D | 2 | | Which type of D.C Generator works in absence of residual magnetism? | Shunt generator | Series generator | Compound generator | Separately excited generator | अविशिष्ट चुंबकत्व के अभाव में किस प्रकार का
D.C जेनरेटर काम करता है? | शंट जनरेटर | श्रेणी जनरेटर | यौगिक जनरेटर | अलग से उत्तीजेत
जनरेटर | D | 2 | | Which type of D.C generator is used for arc welding? | Shunt generator | Series generator | Differential compound generator | Cumulative compound generator | आर्क वेल्डिंग के लिए किस प्रकार के D.C
जनरेटर का उपयोग किया जाता है? | शंट जनरेटर | श्रेणी जनरेटर | विभेदक यौगिक जनरेटर | संचयी यौगिक जनरेटर | С | 2 | | What is the property of wave winding in D.C generator? | Low current low voltage | High current low voltage | Low current high voltage | High current high voltage | D.C जनरेटर में तरंग वाइंडिंग की विशेषता
क्या है? | कम धारा कम वेल्टिज | उच्च धारा कम वेल्टिज | कम धारा उच्च वोल्टेज | उच्च धारा उच्च
वोल्टेज | С | 2 | | What is the purpose of resistance wire used in the commutator connection in D.C generator? | Maintain constant voltage | Nullifying statically induced emf | Increasing statically induced emf | Smooth reversal of current direction | D.C जनरेटर में कम्यूटेटर संयोजन में प्रयुक्त
प्रतिरोध तार का उद्देश्य क्या है? | नियत वोल्टेज बनाए रखें | शून्य स्थैतिक रूप से प्रेरित
ईएमएफ | स्थैतिक रूप से प्रेरित
ईएमएफ बढ़ाना | धारा दिशा का
आसानी से पलटना | D | 2 | | 1 2 3 4 | | | | | | | | | | | | | Why solid pole shoes are used in D.C generator? | To reduce the copper loss | To increase the residual magnetism | To decrease the residual magnetism | magnetic path | D.C जनरेटर में ठोस पोल शू का उपयोग क्यों
किया जाता है? | तांबे के नुकसान को कम
करने के लिए | अवशिष्ट चुंबकत्व को बढ़ाने
के लिए | अवशिष्ट चुंबकत्व को
कम करने के लिए | चुंबकीय पथ के
रिलक्टेंस को कम
करने के लिए | D | 2 | | Which metal is used to make large capacity DC generator yoke? | Cast iron | Soft iron | Aluminium | Rolled Steel | बड़ी क्षमता के डीसी जनरेटर योक बनाने के
लिए किस धातु का उपयोग किया जाता है? | ढलवां लोहा | नर्म लोहा | अल्युमीनियम | रोल्ड स्टील | D | 2 | | What is the function of split rings in a D.C generator? | Supplies output continuously | Makes output in the uni direction | Makes output in the opposite direction | Collects the output from alternate conductors | डी सी जनरेटर में स्पिलट रिंग्स का क्या कार्य
है? | लगातार आउटपुट की
आपूर्ति | एक दिशा में आउटपुट
बनाता है | विपरीत दिशा में
आउटपुट करता है | प्रत्यावर्ती कंडक्टर से
आउटपुट एकत्र
करता है | В | 2 | | Which type of voltage is induced dynamically in a D.C generator? | Pulsating voltage | Oscillating voltage | Alternating voltage | Direct current voltage | D.C जनरेटर में किस प्रकार का वोल्टेज
गतिशील रूप से प्रेरित होता है? | पल्सेटिंग वोल्टेज | दोलनशील वोल्टेज | प्रत्यावर्ती वोल्टेज | प्रत्यक्ष धारा वोल्टेज | С | 2 | |---|---------------------------------|--------------------------------------|---|---|--|--|---|---|--|---|---| | What is the purpose of slot marked as 'X'? | To fix the key way | To make air
circulation | For lubrication purpose | For easy removal from shaft | 'X' के रूप में चिह्नित स्लॉट का उद्देश्य क्या है? | कुंजी तरीका ठीक करने के
लिए | वायु परिसंचरण बनाने के
लिए | स्नेहन उद्देश्य के लिए | शाफ़्ट से आसानी
से
हटाने के लिए | A | 2 | | 14 What is the purpose of field coils in D.C generator? | To increase the flux in air gap | To decrease the magnetizing current | To magnetize the poles to produce coil flux | To increase the reluctance of magnetic path | D.C जनरेटर में फील्ड कॉइल का उद्देश्य क्या
है? | एयर गैप में फ्लक्स को
बढ़ाने के लिए | मैग्नेटाइजिंग करंट को कम
करने के लिए | कुंडली फ्लक्स का
निर्माण करने के लिए
ध्रुवों को चुम्बकित करना | चुंबकीय पथ के
रिलक्टेंस को बढ़ाने
के लिए | С | 2 | | Which metal is used to make pole core of large DC generator machines? | Soft iron | Cast iron | Cast steel | Stainless steel | बड़े डीसी जनरेटर मशीनों के पोल कोर बनाने
के लिए किस धातु का उपयोग किया जाता है? | नर्म लोहा | ढलवां लोहा | ढलवां इस्पात | स्टेनलेस स्टील | С | 2 | | Why the pole core stampings are laminated in DC generator? | Reduce the friction loss | Reduce the windage loss | Reduce the hysteresis loss | Reduce the eddy current loss | क्यों पोल कोर स्टांपिंग डीसी जनरेटर में
पटलित करते हैं? | घर्षण हानि को कम करें | विंडेज लॉस को कम करें | हिस्टैरिसीस हानि को
कम करें | भंवर धारा हानि को
कम करें | D | 2 | | Which type of DC generator is used for electroplating process? | Shunt generator | Series generator | Differential compound generator | Cumulative compound generator | इलेक्ट्रोप्लेटिंग प्रक्रिया के लिए किस प्रकार के
डीसी जनरेटर का उपयोग किया जाता है? | शंट जनरेटर | श्रेणी जनरेटर | विभेदक यौगिक जनरेटर | संचयी यौगिक जनरेटर | Α | 2 | | What is the purpose of compensating winding in DC generator? | Minimizes rough commutation | Maintain constant output voltage | Neutralizes the demagnetizing effect | Decreases the excitation current of field coils | डीसी जनरेटर में कम्पन्सीटेंग वाइंडिंग का
उद्देश्य क्या है? | कठोर कम्यूटेशन कम
करता है | नियत आउटपुट वोल्टेज
बनाए रखें | विचुम्बकीकरण प्रभाव
को बेअसर कर देता है | क्षेत्र कुंडली की
उत्तेजन धारा को
घटाता है | С | 2 | | What is the effect if the shunt field resistance is above critical resistance value in a D.C generator? | Output voltage is pulsating | Output voltage is above normal | Generator fails to build up voltage | Generator builds up voltage normally | यदि शंट फ़ील्ड प्रतिरोध क्रांतिक प्रतिरोध मान
से ऊपर है तो क्या प्रभाव पड़ता
है? | आउटपुट वोल्टेज पर्ल्सीटैंग
है | आउटपुट वोल्टेज सामान्य
से ऊपर है | जनरेटर वोल्टेज बनाने में
विफल रहता है | जेनरेटर सामान्य रूप
से वोल्टेज बनाता है | С | 3 | | What is the effect of armature reaction in DC generator? | Output voltage increases | Output voltage decreases | Output voltage is pulsating | Output voltage will become zero | डीसी जनरेटर में आर्मेचर प्रतिक्रिया का प्रभाव
क्या है? | आउटपुट वोल्टेज बढ़ता है | आउटपुट वोल्टेज कम हो
जाता है | आउटपुट वोल्टेज स्पंदित
हो रहा है | आउटपुट वोल्टेज
शून्य हो जाएगा | В | 3 | | Calculate the emf genarated in a 4 pole DC generator with simplex wave wound armature has 1020 conductors and driven at a speed of 1500 rpm, the flux / pole is 0.007 webers? | 178 V | 243 V | 357 V | 428 V | सिम्पलेक्स वेव वाउंड आर्मेचर के साथ एक 4
पोल डीसी जनरेटर में 1020 कंडक्टर है और
1500 आरपीएम की गति से संचालित है,
फ्लक्स / पोल 0.007 वेबर है; उत्पादित
ईएमएफ की गणना करें? | 178 V | 243 V | 357 V | 428 V | С | 3 | | How the effect of armature reaction can be neutralized in large DC generators? | Using compensating winding | Providing additional inter poles | Increasing brush contact resistance | Adding resistance wires with winding | बड़े डीसी जनरेटर में आर्मचर प्रतिक्रिया के
प्रभाव को कैसे बेअसर किया जा सकता है? | कम्पनसेटिंग वाइंडिंग का
उपयोग करना | अतिरिक्त इंटर पोल प्रदान
करना | ब्रश संपर्क प्रतिरोध बढ़ना | वाइंडिंग के साथ
प्रतिरोध तारों को
जोड़ना | A | 3 | | What is the effect in D.C generator, if it is kept ideal for long time? | Field coil resistance increases | Armature resistance increases | Increase the armature reaction | Looses its residual magnetism | D.C जनरेटर में क्या प्रभाव होता है, अगर इसे
लंबे समय तक बंद रखा जाए? | फ़ील्ड काँइल प्रतिरोध बढ़
जाता है | आर्मेचर प्रतिरोध बढ़ता है | आमेचर प्रतिक्रिया बढ़ना | अपने अवशिष्ट
चुंबकत्व को खो देता है | D | 3 | | 4 Calculate the induced emf of 4 pole dynamo having 1000 rpm lap wound and total number of conductors is 600, the flux / pole is 0.064 wb? | 160V | 320V | 480V | 640V | 4 पोल डायनेमो के प्रेरित ईएमएफ की गणना
करें, 1000 आरपीएम लैप वाउंड और
कंडक्टरों की कुल संख्या 600 है, फ्लक्स /
पोल 0.064 wb है? | 160V | 320V | 480V | 640V | D | 3 | | What is the effect on induced emf if the main field flux get distorted in DC generator? | Induced emf
increases | Induced emf
decreases | No change in induced emf | Induced emf
becomes zero | यदि मुख्य क्षेत्र का प्रवाह डीसी जनरेटर में
विकृत हो जाए, तो प्रेरित ईएमएफ पर क्या
प्रभाव पड़ता है? | प्रेरित EMF बढ़ता है | प्रेरित ईएमएफ घटता है | प्रेरित ईएमएफ में कोई
बदलाव नहीं | प्रेरित ईएमएफ शून्य
हो जाता है | В | 3 | | 66 What is the cause for heavy sparking in brushes of DC generator? | Short circuit in field winding | Short circuit in
armature winding | MNA and GNA position changed | Too much spring tension at brush | डीसी जनरेटर के ब्रश में भारी स्पार्किंग का
कारण क्या है? | फील्ड वाइंडिंग में शॉर्ट
सर्किट | आमेचर वाइंडिंग में शॉर्ट
सर्किट | एमएनए और जीएनए
स्थिति बदल गई | ब्रश के रूप में बहुत
अधिक स्प्रिंग तनाव | С | 3 | | Question | OPT A | ОРТ В | OPT C | the Trade - Electricia | Question | | ОРТ В | OPT C | OPT D | Ans | Levels | |---|-------------------------------------|---------------------------------|-------------------------------------|--|---|---------------------------------------|--------------------------------|--|---|------|--------| | Question | OFFA | OFF | | 0112 | Question | OLIA | | 0110 | OI I B | Alls | Levei | | 1 Which instrument is used to measure armature winding resistance? | Megger | Multimeter | Series type Ohm
meter | Kelvin bridge | आमेचर वाइंडिंग प्रतिरोध को मापने के लिए
किस उपकरण का उपयोग किया जाता है? | मेगर | मल्टीमीटर | श्रेणी प्रकार ओह्म मीटर | केल्विन ब्रिज | D | 1 | | 2 Which instrument is used to test armature winding for short and open circuit? | Tong Tester | Internal Growler | External Growler | Digital multimeter | "शॉर्ट और ओपन सिकेट के लिए आमेचर
वाइंडिंग का परीक्षण करने के लिए किस
उपकरण का उपयोग किया जाता है? | टोंग परीक्षक | आंतरिक ग्राउलर | बाहरी ग्राउलर | डिज़िटल मल्टीमीटर | С | 1 | | 3 What is the name of the speed control method of DC motor? | Field diverter method | Field tapping method | Voltage control
method | Armature diverter method | डीसी मोटर की गति नियंत्रण विधि का क्या नाम
है? | फील्ड डायवर्टर विधि | फील्ड टेपिंग विधि | वोल्टेज नियंत्रण विधि | आमेचर डायवर्टर विधि | D | 1 | | 4 Which winding wire is used for DC field coil? | Super enameled copper wire | Single silk covered copper wire | Double silk covered copper wire | PVC covered copper winding wire | डीसी फील्ड कॉइल के लिए किस वाइंडिंग तार
का उपयोग किया जाता है? | सुपर इनेमल्ड तांबे के
तार | सिंगल सिल्क कवर्ड
कॉपर वायर | डबल सिल्क कवर्ड
कॉपर वायर | PVC कवर्ड कॉपर
वाइंडिंग वायर | A | 1 | | 5 Which formula is used to calculate the speed of DC motor? | $N = \frac{E_b}{\phi}$ | $N = \frac{\varphi}{E_b}$ | $N = \frac{E_b \cdot \varphi}{120}$ | $N = \frac{E_b \cdot \varphi}{60}$ | "डीसी मोटर की गति की गणना करने के लिए
किस सूत्र का उपयोग किया जाता है? | $N = \frac{E_b}{\phi}$ | $N = \frac{\varphi}{E_b}$ | $N = \frac{E_b \cdot \varphi}{120}$ | $N = \frac{E_b \cdot \varphi}{60}$ | A | 1 | | 6 How many parallel paths in duplex lap winding in the armature of 4 pole D.C Motor? | 2 | 4 | 6 | 8 | 4 पील D.C मीटर की आमेचर में डुप्लेक्स लैप
वाइंडिंग में कितने समानांतर रास्ते हैं? | 2 | 4 | 6 | 8 | A | 1 | | 7 Which rule determines the direction of rotation of armature in D.C motor? | Right hand grip rule | Right hand palm rule | Fleming's left hand rule | Fleming's right hand rule | D.C मोटर में आर्मेचर के घूमने की दिशा कौन
सा नियम निर्धारित करता है? | दाहिना हाथ पकड़ नियम | दाहिने हाथ की हथेली
का नियम | फ्लेमिंग के बाएं हाथ का
नियम | फ्लेमिंग के दाहिने हाथ
का नियम | С | 1 | | 8 What is the name of D.C motor? E1 DC SUPPLY DC SUPPLY BB B | D.C shunt motor | D.C series motor | D.C differential compound motor | D.C cumulative compound motor | D.C मोटर का क्या नाम है? | D.C शंट मोटर | D.C श्रेणी मोटर | D.C अवकलन योगिक
मोटर | D.C संचयी योगिक मोटर | R A | 1 | | 9 Which rule determines the direction of current in D.C motor? | Right hand grip rule | Right hand palm rule | Fleming's left hand rule | Fleming's right hand rule | डी सी मोटर में करंट की दिशा किस नियम से
निर्धारित होती है? | दाहिना हाथ पकड़ नियम | दाहिने हाथ की हथेली
का नियम | फ्लेमिंग के बाएं हाथ का
नियम | फ्लेमिंग के दाहिने हाथ
का नियम | D | 1 | | 10 What is the formula to calculate the current taken by D.C shunt motor armature? | $I_a = \frac{V}{R_a}$ | $I_a = \frac{E_b}{R_a}$ | $I_a = \frac{V - E_b}{R_a}$ | $I_a = \frac{V + E_b}{R_a}$ | D.C शंट मोटर आमेचर द्वारा ली गई धारा की
गणना करने का सूत्र क्या है? | $I_a = \frac{V}{R_a}$ | $I_a = \frac{E_b}{R_a}$ | $I_a = \frac{V - E_b}{R_a}$ | $I_a = \frac{V + E_b}{R_a}$ | С | 1 | | 11 Which rule is applied to identify the direction of flux in DC motor? | Cork's screw rule | Right hand grip rule | Fleming's left hand rule | Fleming's right hand rule | डीसी मोटर में फ्लक्स की दिशा की पहचान
करने के लिए कौन सा नियम लागू किया जाता
है? | कॉर्क स्क्रू नियम | दाहिना हाथ पकड़ नियम | प्लेमिंग के बाएं हाथ का
नियम | फ्लेमिंग के दाहिने हाथ
का नियम | С | 1 | | Name the type of DC motor. | Shunt motor | Series motor | Long shunt
compound motor | Short shunt compound motor |
र्डीसी मोटर के प्रकार को नाम दें। | शंट मोटर | श्रेणी मोटर | लंबी शंट कंपाउंड मोटर | शॉर्ट शंट कंपाउंड मोटर | D | 1 | | 13 What is the formula to calculate back EMF in a DC motor? | $E_b = \frac{ZNP}{\phi \; 60 \; A}$ | $E_b = \frac{NP}{Z \phi 60 A}$ | $E_b = \frac{\phi Z N P}{60 A}$ | $E_b = \frac{60 \text{ A } \phi}{Z \text{ N P}}$ | DC मोटर में EMF की गणना करने का सूत्र
क्या है? | $E_b = \frac{ZNP}{\phi 60 \text{ A}}$ | $E_b = \frac{NP}{Z \phi 60 A}$ | $E_b = \frac{\varphi Z N P}{60 A}$ | $E_b = \frac{60 \; A \; \phi}{Z \; N \; P}$ | С | 1 | | What is the name of the equipment? | Megger | Earth resistance tester | Internal growler | External growler | उपकरण का नाम क्या है? | मेगर | भू प्रतिरोध परीक्षक | आंतरिक ग्राउलर | बाहरी ग्राउलर | D | 1 | |---|-----------------------------------|--------------------------------------|---|--|--|---|----------------------------------|--|--|---|---| | TO LINE 200 VOLTS COIL MISULAYED PROM CORE | | | | | | | | | | | | | 5 What is the name of winding, if coil pitch is less than pole pitch? | Full pitch winding | Half pitch winding | Long chorded winding | Short chorded winding | यदि काइल पिच, पोल पिच से कम है, तो
वाइंडिंग का नाम क्या है? | पूर्ण पिच कुंडलन | अर्ध पिच कुंडलन | लंबी कोर्डेड वाइंडिंग | शॉर्ट कॉर्डेड वाइंडिंग | D | 1 | | 16 What is the purpose of series resistor connected with holding coil in a D.C four point starter? | Limit the current in holding coil | Increase the current in holding coil | Increase the voltage in holding coil | Decrease the voltage in holding coil | डी सी चार पॉइंट स्टार्टर में होल्डिंग कॉइल से
जुड़े श्रेणी प्रतिरोधक का उद्देश्य क्या है? | होल्डिंग कुंडली में करंट
को सीमित करें | होल्डिंग कॉइल में करंट
बढ़ाएं | कॉइल को पकड़ने में
वोल्टेज बढ़ाएं | होल्डिंग कॉइल में
वोल्टेज कम करें | A | 2 | | 7 Which speed control method of D.C series motor is used for electric train? | Field diverter method | Field tapping method | Armature diverter method | Supply voltage control method | D.C सीरीज मोटर की किस गति नियंत्रण विधि
का उपयोग इलेक्ट्रिक ट्रेन के लिए किया जाता
है? | फील्ड डायवर्टर विधि | फील्ड टेपिंग विधि | आमेचर डायवटेर विधि | आपूर्ति वोल्टेज नियंत्रण
विधि | A | 2 | | 8 Why shunt field coil is connected in series with holding coil in D.C three point starter? | Increase the holding coil current | Decrease the holding coil current | Protect the shunt field from over current | Protect the motor in case of open in shunt field | शंट फील्ड काँड्ल को D.C थ्री पाँइंट स्टार्टर में
होल्डिंग काँड्ल के साथ श्रृंखला में क्यों जोड़ा
जाता
है? | होल्डिंग काँइल करंट
बढ़ाएं | होल्डिंग काँड्ल करंट
घटाएं | शंट फील्ड को करंट से
बचाएं | शंट फ़ील्ड खुले होने की
स्थिति में मोटर को
सुरक्षित रखें | D | 2 | | 9 Why the direction of rotation is changed only by changing the armature current direction in a D.C compound motor? | Maintain rated speed | Maintain motor characteristics | Avoid armature reaction effect | Prevent motor from over loading | D.C मिश्रित मोटर में आमेंचर धारा दिशा को
बदलकर केवल घूर्णन की दिशा क्यों बदल दी
जाती है? | रेटेड गति बनाए रखें | मोटर विशेषताओं को
बनाए रखें | आर्मेचर प्रतिक्रिया प्रभाव
से बचें | मोटर को ओवर लोडिंग
से रोकें | В | 2 | | 0 Which speed control methods offers below normal speed in DC shunt motor? | Field control method | Voltage control method | Armature control method | Ward Leonard
system of speed
control | डीसी शंट मोटर में सामान्य गति से नीचे कौन
सी गति नियंत्रण विधियां प्रदान करती
हैं? | क्षेत्र नियंत्रण विधि | वोल्टेज नियंत्रण विधि | आमेचर नियंत्रण विधि | गति नियंत्रण की वार्ड
लियोनार्ड प्रणाली | С | 2 | | 1 Why starters are required to start D.C motors in industries? | Regulate the field voltage | Reduce the armature current | Control the armature reaction | Smooth operation of motors | उद्योगों में D.C मोटर्स को शुरू करने के लिए
स्टार्टर क्यों आवश्यक है? | क्षेत्र वोल्टेज को
विनियमित करें | आमेचर करंट को कम
करें | आर्मेचर प्रतिक्रिया को
नियंत्रित करें | मोटरों का सुचारू
संचालन | В | 2 | | 2 Which insulating material belongs to class 'B' insulation? | Cotton | Bamboo | Fiber glass | Leatheroid paper | कौन सी कुचालक सामग्री श्रेणी बी के कुचालक
की
है? | कपास | बांस | फाइबर ग्लास | चमड़े का कागज | С | 2 | | What is the temperature value of class 'F' insulation? | 90°C | 105°C | 120°C | 155°C | श्रेणी 'एफ' इन्सुलेशन का तापमान मान क्या है? | 90 डिग्री सेल्सियस | 105 डिग्री सेल्सियस | 120 डिग्री सेल्सियस | 155 डिग्री सेल्सियस | D | 2 | | Which type of D.C motor is used for constant speed drives? | DC series motor | DC shunt motor | Differential long shunt compound motor | Differential short
shunt compound
motor | निरंतर गति ड्राइव के लिए किस प्रकार की D.C
मोटर का उपयोग किया जाता है? | डीसी श्रेणी मोटर | डीसी शंट मोटर | डिफरेंशियल लॉना शंट
कंपाउंड मोटर | डिफरेंशियल शॉर्ट शंट
कंपाउंड मोटर | В | 2 | | Which type of DC motor is used in elevators? | DC series motor | DC shunt motor | DC differential compound motor | DC cumulative compound motor | लिफ्ट में किस प्रकार की डीसी मोटर का
उपयोग किया जाता है? | डीसी श्रेणी मोटर | डीसी शंट मोटर | डीसी डिफरेंशियल
यौगिक मोटर | डीसी संचयी यौगिक
मोटर | D | 2 | | below the rated speed in DC series motor? | Field diverter method | Tapped field method | Voltage control
method | Armature diverter method | गति नियंत्रण का कौन सा तरीका डीसी श्रेणी
मोटर में रेटेड गति के नीचे गति देता है? | फील्ड डायवर्टर विधि | टेप्ड क्षेत्र विधि | वोल्टेज नियंत्रण विधि | आमेचर डायवर्टर विधि | | 2 | | What is the effect, if a four point starter resistance is cutoff during running? | Motor stopped | Runs at slow speed | Runs at very high speed | Runs at reverse direction | क्या प्रभाव है, अगर चलने के दौरान चार बिंदु
स्टार्टर प्रतिरोध कटऑफ है? | मोटर बंद हो जाएगी | धीमी गति से चलता है | बहुत तेज गति से चलता
है | उल्टी दिशा में चलता है | В | 2 | | 28 Why carbon composition brush requires in the armature circuit to operate the D.C motor? | Increases the starting torque | Protects from armature reaction | Protects armature from over loading | Reduces the spark in the commutator segment | D.C मोटर को संचालित करने के लिए आर्मेचर
सर्किट में कार्बन कंपोजिशन ब्रश की
आवश्यकता क्यों होती
है? | प्रारंभिक बलाघूर्ण को
बढ़ाता है | आमेंचर प्रतिक्रिया से
बचाता है | अति भारण से आर्मेचर
की रक्षा करता है | कम्यूटेटर खंड में स्पार्क
कम कर देता है | D | 2 | |--|--------------------------------|--|---|---|--|-------------------------------------|--|--|--|---|---| | 29 Why series motor produce high torque and speed initially without load? | Absence of back emf | Load current flows through field winding | Armature current and field current are same | Series field winding wound with thick wire | सीरीज़ मोटर बिना भार के आरंभिक उच्च
बलाघूर्ण और गति क्यों पैदा करती
है? | बैंक ईएमएफ की
अनुपस्थिति | फ़ील्ड वाइंडिंग के
माध्यम से लोड करंट
प्रवाह होता है | आमेचर करंट और
फील्ड करंट समान होते
हैं | मोटी तार के साथ श्रेणी
क्षेत्र वाइंडिंग तार | A | 2 | | 30 Why the series field is short circuted at the time of starting in differential compound motor? | To reduce the starting current | To increase the speed of motor | To decrease the speed of motor | To maintain proper direction of rotation | डिफरेंशियल कंपाउंड मोटर में शुरू करने के
समय श्रेणी क्षेत्र को लघुपथित क्यों किया जाता
है? | प्रारंभिक धारा को कम
करने के लिए | मोटर की गति बढ़ाने के
लिए | मोटर की गति को कम
करने के लिए | रोटेशन की उचित दिशा
बनाए रखने के लिए | D | 2 | | 31 Which is the most effective method of balancing armature? | Static balancing | Dynamic balancing | Attached with counter balancing | Plugged with lead weight balancing | आमेंचर को संतुलित करने का सबसे प्रभावी
तरीका कौन सा है? | स्थैतिक संतुलन | गतिशील संतुलन | काउंटर संतुलन के साथ
संलग्न | सीसा भार संतुलन के
साथ प्लग किया गया | В | 2 | | 32 Which material is used for starting resistance of DC starters? | Eureka | Nichrome | Manganin | Constantine | डीसी स्टार्टर्स के प्रतिरोध को शुरू करने के
लिए किस सामग्री का उपयोग किया जाता
है? | यूरेका | नाइक्रोम | मैनाानिन | कांस्टेंटाइन | A | 2 | | 33 Which DC compound motor is operated at constant speed under varying load? | Differential long shun | t Cumulative long
shunt | Differential short
shunt | Cumulative short shunt | किस डीसी कंपाउंड मोटर को अलग-अलग
लोड पर नियत गति से संचालित किया जा
सकता है? | डिफरेंशियल लॉना शंट | संचयी लंबे शंट | विभेदक लघु शंट | संचयी लघु शंट | В | 2 | | 34 How No volt coil is connected in a three point starter with DC shunt motor? | Directly connected to supply | Connected in series with armature | Connected in parallel with armature | Connected in series with shunt field | डीसी शंट मोटर के साथ तीन पॉइंट स्टार्टर में
नो वोल्ट कॉइल कैसे जुड़ा होता है? | सीधे आपूर्ति से जुड़ा हुआ | आर्मेचर के साथ श्रृंखला
में जुड़ा हुआ है | आमेंचर के साथ
समानांतर में जुड़ा हुआ है | शंट फ़ील्ड के साथ श्रेणी
में जुड़ा हुआ है | D | 2 | | Which type of armature winding is illustrated? | Duplex lap winding |
Triplex lap winding | Simplex lap winding | Quadruplex lap
winding | किस प्रकार की आमैचर वाइंडिंग का चित्रण
किया गया है? | डुप्लेक्स लैप वाइंडिंग | ट्रिपलेक्स लैप वाइंडिंग | सिंप्लेक्स लैप वाइंडिंग | काडु प्लेक्स लैप वाईडिंग | A | 2 | | 36 Which growler test for armature is illustrated? | Open coil test | Grounded coil test | Shorted coil test | Shorted commutator test | आर्मेचर के लिए कौन सा ग्राउलर परीक्षण
सचित्र है? | खुली कुंडली परीक्षण | जमीन का तार परीक्षण | लघुपथित कुंडल परीक्षण | लघुपथित कम्यूटेटर
परीक्षण | A | 2 | | 37 Which speed control method is applied to obtain both below normal and above normal speed in DC motor? | Field control method | Armature control method | Tapped field speed control | Ward Leonard
speed control | डीसी मोटर में सामान्य से ऊपर और नीचे दोनों
गतियों को प्राप्त करने के लिए किस गति
नियंत्रण विधि को लागू किया जाता है? | क्षेत्र नियंत्रण विधि | आमेंचर नियंत्रण विधि | टैप फ़ील्ड गति नियंत्रण | वार्ड लियोनार्ड गति
नियंत्रण | D | 2 | | 38 Why commutators are sparking heavily? | Incorrect brush position | Incorrect field connection | Incorrect direction of rotation | Incorrect armature connection | कम्यूटेटर क्यों तेज चमक उत्पन्न कर रहा है? | ब्रश की गलत स्थिति | गलत फील्ड कनेक्शन | घूर्णन की गलत दिशा | गलत आमैचर कनेक्शन | A | 2 | | 39 What is the action of the induced emf in a running D.C motor? | Assists the applied voltage | Opposes the applied voltage | Increases the armature current | Decreases the armature current | चल रही D.C मोटर में प्रेरित ईएमएफ की
क्रिया क्या है? | लागू वोल्टेज की सहायता
करता है | लागू वोल्टेज का विरोध
करता है | आमैचर करंट को बढ़ाता
है | आर्मेचर करंट को घटाता
है | В | 2 | | 40 Which motor has this characteristics curve? | Series motor | Shunt motor | Cumulative compound motor | Differential compound motor | किस मोटर में यह विशेषता है? | श्रेणी मोटर | शंट मोटर | संचयी यौगिक मोटर | विभेदक यौगिक मोटर | С | 2 | |---|-----------------------------------|--------------------------------------|---------------------------------------|---|---|--|--|------------------------------------|---|---|---| | 41 What is the purpose of resistor connected with holding coil in 4 point starter? | Limit current in NVC | Protect the coil from short circuit | Protect the motor from overload | Protect the armature from short circuit | 4 बिंदु स्टार्टर में होल्डिंग कॉइल से जुड़े
प्रतिरोधक का उद्देश्य क्या है? | एनवीसी में धारा सीमा | शॉर्ट सर्किट से कॉइल
को सुरक्षित रखें | मोटर को ओवरलोड से
बचाएं | शॉर्ट सर्किट से आमेचर
को सुरक्षित रखें | A | 2 | | 42 Why the D.C series motor field winding is wound with thick wire? | To regulate field voltage | To carry the load current | To keep maximum inductance | To reduce the armature reaction | D.C श्रृंखला मोटर की फील्ड वाइंडिंग मोटी
तार के साथ वाउंड क्यों है? | फील्ड वोल्टेज को
विनियमित करने के लिए | लोड करंट को ले जाने
के लिए | अधिकतम प्रेरण रखने
के लिए | आमेचर प्रतिक्रिया को
कम करने के लिए | В | 2 | | Which type of speed control of D.C series motor? Do Supply Do Supply | Field parallel method | Field diverter method | Field tapping method | Armature diverter method | D.C श्रृंखला मोटर का गति नियंत्रण किस
प्रकार का है? | क्षेत्र समानांतर विधि | फील्ड डायवर्टर विधि | फील्ड टेपिंग विधि | आमेचर डायवटेर विधि | A | 2 | | 44 Which type of D.C motor is suitable for shearing machines? | Shunt motor | Series motor | Cumulative compound motor | Differential compound motor | कतरनी मशीनों के लिए कौन सी प्रकार की
D.C मोटर उपयुक्त है? | शंट मोटर | श्रेणी मोटर | संचयी यौगिक मोटर | विभेदक यौगिक मोटर | С | 2 | | 45 Where D.C compound motors are preferred? | Constant load requirements | Constant speed requirements | High starting torque requirements | | कहाँ D.C मिश्रित मोटरों को प्राथमिकता दी
जाती है? | लगातार लोड
आवश्यकताएं | नियत गति की
आवश्यकताएं | उच्च आरंभिक बलाघूर्ण
आवश्यकताएं | अलग-अलग लोड
आवश्यकताओं के
अनुसार नियत गति | D | 2 | | 46 What is the necessity of starter for D.C motor? | Limit the field current | Limit the field voltage | Control the motor speed | Limit the armature current | D.C मोटर के लिए स्टार्टर की क्या आवश्यकता
है? | फ़ील्ड धारा को सीमित
करें | फ़ील्ड वोल्टेज को
सीमित करें | मोटर की गति को
नियंत्रित करें | आमेचर करंट को
सीमित करें | D | 2 | | 47 Which type of instrument is used to test the armature winding? | Megger | Growler | Multimeter | Ohmmeter | आर्मेचर वाइंडिंग का परीक्षण करने के लिए
किस प्रकार के उपकरण का प्रयोग किया जाता
है2 | मेगर | ग्राउलर | मल्टीमीटर | ओह्ममीटर | В | 2 | | 48 Why the holding coil of a 3 point starter is connected in series with shunt field? | To limit the load current | To run motor at low voltage | To hold the handle plunger firmly | To protect the motor from high speed | 3 पॉइंट स्टार्टर के होल्डिंग कॉइल को शंट
फ़ील्ड के साथ श्रृंखला में क्यों जोड़ा जाता है? | लोड करंट को सीमित
करने के लिए | कम वोल्टेज पर मोटर
चलाने के लिए | प्लंजर को ठीक से
पकड़ने के लिए | उच्च गति से मोटर की
रक्षा के लिए | D | 2 | | What is the best method to change the DOR of a compound motor without change of its characteristics? | Change armature current direction | Change shunt field current direction | Change series field current direction | Change the current
in armature and
shunt field together | किसी योगिक मोटर की विशेषताओं के बिना
बदले, DOR बदलने के लिए सबसे अच्छी विधि
क्या है? | आमेचर धारा दिशा बदलें | शंट फ़ील्ड धारा दिशा
बदलें | श्रेणी फ़ील्ड धारा दिशा
बदलें | आमेचर और शंट फील्ड
में करंट को एक साथ
बदलें | A | 2 | | 50 What is the purpose of NVC connected in series with the field in 3 point starter? | To improve the torque | Reduce the field current | To decrease the back emf | To prevent increase in speed | 3 बिंदु स्टार्टर में क्षेत्र के साथ श्रृंखला में जुड़े
एनवीसी का उद्देश्य क्या है? | बलाघूणे को सुधारने के
लिए | फ़ील्ड करंट कम करें | बैक EMF को कम
करने के लिए | गति में वृद्धि को रोकने
के लिए | D | 2 | | 51 Which type of DC motor is used for sudden application of heavy loads? | Shunt motor | Series motor | Differential compound motor | Cumulative compound motor | भारी भार के अचानक भारित करने के लिए
किस प्रकार की डीसी मोटर का उपयोग किया
जाता है? | शंट मोटर | श्रेणी मोटर | विभेदक यौगिक मोटर्स | संचयी यौगिक मोटर्स | D | 2 | | 52 Which speed control method is used in food mixture motors? | Voltage control method | Field diverter control method | Armature diverter method | Series field tapping method | खाद्य मिश्रण मोटर्स में किस गति नियंत्रण विधि
का उपयोग किया जाता है? | वोल्टेज नियंत्रण विधि | फ़ील्ड डायवर्टर नियंत्रण
विधि | आमैचर डायवर्टर विधि | श्रृंखला क्षेत्र टेपिंग विधि | D | 2 | | 53 Which speed control system provides a smooth variation of speed from zero to above normal? | Field control | Armature control | Field diverter control | Ward-Leonard
system control | को उपयोग किया जाता हूं?
कोन सी गति नियंत्रण प्रणाली शून्य से सामान्य
से अधिक तक गति को एक आसान बदलाव
प्रदान करता है? | क्षेत्र नियंत्रण | ापाय
आमेचर नियंत्रण | फ़ील्ड डायवर्टर नियंत्रण | वार्ड-लियोनार्ड सिस्टम
नियंत्रण | D | 2 | | 54 What is the purpose of tapes in winding? | Insulate slots | Bind the coils | Wrap the conductor | Insulate exposed conductors | वाइंडिंग में टेप का उद्देश्य क्या है? | स्लॉट्स को इंसुलेट करें | कॉइल को बांधें | कंडक्टर लपेटें | खुले कंडक्टरों को
इन्सुलेट करें | С | 2 | | Which type of DC armature winding the front pitch (Y _F) is greater than back pitch (Y _B)? | Lap winding | Wave winding | Progressive winding | Retrogressive winding | किस प्रकार की डीसी आर्मेचर फ्रंट पिच
(वाईएफ) पीछे की पिच (वाईबी) से अधिक है? | लैप वाईडिंग | वेव वाइंडिंग | प्रोग्रेसिव वाइंडिंग | रिट्रोग्रेसिव वाइंडिंग | D | 2 | | 56 What reduces the cross sectional area | Dynama shoot | Low alloy sheet | High allow shoot | Normal steel sheet | T | डायनमो शीट | िका। गिथ धान की चाटा | उच्च मिश्र धातु की चादर | सामान्य स्टील शीट | <u> </u> | Т э | |--|---|---------------------------------------|--|---|---|---|--------------------------------------|--|---|----------|-----| | of core material for VA rating? | Dynamo sheet | Low alloy sneet | High alloy sheet | | वीए रेटिंग के लिए कोर सामग्री के क्रॉस
सेक्शनल क्षेत्र को क्या कम करता है? | ठापगमा साट | परम मित्र यातु परा पादर | उप्प मित्र वातु का वादर | सामान्य स्टाल शाट | С | 2 | | 57 How to obtain opposite polarity in adjacent poles of a 4 pole DC motor? | Varying the number of turns in coil | Making series connection of coils | Making parallel connection of coils | Making current flow in different direction | 4 ध्रुव डीसी मोटर में आसन्न ध्रुवों में विपरीत
ध्रुवता कैसे प्राप्त करें? | कुंडल में घुमावों की
संख्या को बदलना | कॉइल्स की श्रेणी
संयोजन बनाना | कॉइल के समानांतर
संयोजन बनाना | धारा प्रवाह को अलग
दिशा में बनाना | D | 2 | | 58 What is the operation in the rewinding process? | Cleaning of slots | Removing of winding | Removing of wedges | Cutting of winding wire | रिवाइंडिंग प्रक्रिया में यह क्रिया क्या है? | खांचों की सफाई
 वाइंडिंग निकालना | वेजेज को हटाना | वाइंडिंग तार काटना | С | 2 | | 59 Which insulating material used in winding is a highly non -hygroscopic and possess good electrical strength? | Empire cloth | Triplex paper | Millinex paper | Leatheroid paper | वाइंडिंग में उपयोग की जाने वाली कौन सी
कुचालक सामग्री एक अत्यधिक गैर-
हीग्रोस्कोपिक(नमी न सोखने वाली) है और
अच्छी विद्युत शक्ति रखती है? | एम्पायर कपडा | ट्रिपलेक्स पेपर | मिलिनेक्स पेपर | चमड़े का कागज | С | 2 | | 60 Which type of armature winding is illustrated? | Triplex wave winding | Duplex wave winding | Progressive lap
winding | Retrogressive lap winding | किस प्रकार की आमैचर वाइंडिंग का चित्रण
किया गया है? | ट्रिपलेक्स वेव वाइंडिंग | ड्यूपलेक्स वेव वाइंडिंग | प्रगतिशील लैप वाइंडिंग | रिट्रोग्नेसिव लैप वाइंडिंग | С | 2 | | 61 Calculate the average pitch (Y _A) for retrogressive wave winding, if No. of armature conductor = 14 No. of slots = 7 No. of poles = 2 | 4 | 6 | 8 | 14 | रिट्रॉग्रेसिव वेव वाइंडिंग के लिए औसत पिच
(YA) की गणना करें, यदि, आर्मेचर कंडक्टर
की संख्या=14, स्लॉट की संख्या=7, ध्रुवों की
संख्या=2 | 4 | 6 | 8 | 14 | В | 2 | | Which type of test is illustrated for the armature after rewound? | Open coil test | Shorted coil test | Voltage drop test | Grounded coil test | प्रतिक्षेप के बाद आमेचर के लिए किस प्रकार
का परीक्षण चित्रित किया गया है? | खुली कुंडली परीक्षण | लघुपथित कुंडल परीक्षण | वोल्टेज ड्रॉप परीक्षण | ग्राउंडेड कॉइल परीक्षण | В | 2 | | 63 Why the newly rewound armature must be preheated before varnishing? | Drive out the moisture from it | Help for quick drying of varnish | Make easy to penetrate varnish inside | Maintain uniform
spreading of
varnishing | वानिशिंग से पहले नए रीवाउंड आमेचर को
गरम क्यों किया जाना चाहिए? | इससे नमी को बाहर
निकालें | वानिश के त्वरित सुखाने
के लिए मदद | अंदर वानिश घुसना
आसान बनाएं | वार्निशिंग के समान
प्रसार को बनाए रखें | A | 2 | | 64 How the direction of rotation of a DC compound motor is changed? | By changing the direction of armature current | By interchanging the supply terminals | By changing the direction of both field and armature current | By changing the direction of series field current | डीसी कंपाउंड मोटर के घूणेन की दिशा कैसे
बदली जाती है? | आमेचर धारा की दिशा
बदलकर | आपूर्ति टोमैनलों को
आपस में करके | क्षेत्र और आर्मचर दोनों
की दिशा बदलकर | श्रृंखला क्षेत्र की धारा की
दिशा बदलकर | A | 3 | | 65 What is the effect in a D.C shunt motor, if its supply terminals are interchanged? | Runs in slow speed | Runs in high speed | Runs in the same direction | Runs in the reverse direction | डी सी शंट मोटर में क्या प्रभाव पड़ता है, यदि
इसकी आपूर्ति टर्मिनलों को आपस में बदल
दिया जाता है? | धीमी गति से चलती है | तेज रफ्तार में चलती है | एक ही दिशा में चलता है | | С | 3 | | 66 What is the speed, if field winding of a DC shunt motor is in open circuit? | Stop running | Motor runs normally | Runs at slow speed | Runs in very high speed | यदि डीसी शेंट मोटर की फील्ड वाइंडिंग ओपन
सर्किट में हो, तो गति क्या है? | चलना बंद हो जायेगा | मोटर सामान्य रूप से
चलती है | धीमी गति से चलती है | बहुत तेज गति में चलती
है | D | 3 | | 67 What is the reason for reduction in speed of a D.C shunt motor from no load to full load? | Shunt field current increases | Shunt field current decreases | Armature voltage drop increases | Armature voltage drop decreases | | शंट फील्ड करंट बढ़ता है | शिंट फील्ड करेंट घटता है | आमेंचर वोल्टेज ड्रॉप बढ़
जाती है | आमेंचर वोल्टेज ड्रॉप
कम हो जाता है | С | 3 | |--|-------------------------------|-------------------------------|---------------------------------|---------------------------------|--|-------------------------|--------------------------|-------------------------------------|---------------------------------------|---|---| | | | | | | | | | | | | | | 68 Which winding fault is determined by the test? | Open coil fault | Short coil fault | Grounded coil fault | Grounded core faul | lt कौन सा वाइंडिंग दोष इस परीक्षण द्वारा ज्ञात
 किया जाता है? | खुली कुंडली दोष | लघुपथित कुंडल दोष | ग्राउंडेड कॉइल फॉल्ट | ग्राउंड कोर फॉल्ट | A | 3 | | L BUPPLY N 240 VICLIS AC | | | | | | | | | | | | | | | Na | ame of the Trade - El | ectrician 3 rd Sem - N | SQF - Module 3 - AC. Three Phase Motor | | | | | | | |--|---|---|---|---|--|--|--|--|--|-----|--------| | # Question | OPT A | ОРТ В | OPT C | OPT D | Question | OPT A | ОРТ В | ОРТ С | OPT D | Ans | Levels | | 1 What is the formula to calculate the slip speed (N _{slip}) of 3 phase squirrel cage induction motor? | $N_{\text{slip}} = N_{\text{s}} - N_{\text{r}}$ | $N_{\text{slip}} = N_{\text{r}} - N_{\text{s}}$ | $N_{slip} = \frac{N_S - N_\Gamma}{N_\Gamma}$ | $N_{slip} = \frac{N_S - N_f}{N_S}$ | 3 कला स्क्रिरल केज प्रेरण मोटर की स्लिप गति
(Nslip) की गणना करने का सूत्र क्या है? | $N_{slip} = N_s - N_r$ | $N_{\text{slip}} = N_{\text{r}} - N_{\text{s}}$ | $N_{\text{slip}} = \frac{N_{\text{S}} - N_{\text{f}}}{N_{\text{f}}}$ | $N_{\text{slip}} = \frac{N_{\text{S}} - N_{\text{f}}}{N_{\text{S}}}$ | A | 1 | | 2 What is the type of control circuit? | Inching control | ON remote control | OFF remote control | Forward & reverse control | नियंत्रण सर्किट का प्रकार क्या है? | इन्चिंग नियंत्रण | रिमोट कंट्रोल पर | रिमोट कंट्रोल बंद | आगे और रिवर्स
नियंत्रण | A | 1 | | 3 Which formula is used to calculate the total electrical degree in stator of an A.C motor? | Total electrical degree = 180° / No. of slots | Total electrical degree = 180° x No. of slots | Total electrical degree = 180° / No. of poles | Total electrical degree = 180° x No. of poles | A.C मोटर के स्टेटर में कुल विद्युत डिग्री की
गणना करने के लिए किस सूत्र का उपयोग किया
जाता है? | कुल विद्युत डिग्री =
180 ° / स्लॉट्स की
संख्या | कुल विद्युत डिग्री =
180 ° x स्लॉट्स की
संख्या | कुल विद्युत डिग्री =
180 ° / ध्रुवों की
संख्या | कुल विद्युत डिग्री =
180 ° x ध्रुवों की
संख्या | D | 1 | | 4 What is the name of the A.C motor starter? | DOL starter | Auto transformer
starter | Semi automatic star
delta starter | Fully automatic star
delta starter | A.C मोटर स्टार्टर का नाम क्या है? | DOL स्टार्टर | ऑटो ट्रांसफार्मर
स्टार्टर | अर्ध स्वचालित स्टार
डेल्टा स्टार्टर | पूर्ण स्वचालित स्टार
डेल्टा स्टार्टर | В | 1 | | 5 What is the formula to find synchronous speed of a A.C 3 phase induction motor? | Synchronous speed =
120F | Synchronous speed $= \frac{120P}{F}$ | Synchronous speed = $\frac{120}{PF}$ | Synchronous speed = PF 120 | ए सी 3 कला प्रेरण मोटर की तुल्यकालिक गति
ज्ञात करने का सूत्र क्या है? | तुल्यकालिक गति =
<u>120F</u>
P | तुल्यकालिक गति =
120P
F | तुल्यकालिक गति =
120
P F | तुल्यकालिक गति = | A | 1 | | 6 What is the fuse rate to run a 10 HP three phase induction motor at full load? | 10 A | 15 A | 25 A | 30 A | पूर्ण लोड पर 10 एचपी तीन कला प्रेरण मोटर
चलाने के लिए फ्यूज दर क्या है? | 10 A | 15 A | 25 A | 30 A | С | 1 | | 7 What is the name of the contact marked as 'X'? Value | Star contact | Delta contact | Auxiliary contact | Over load relay contact | संपर्क का नाम क्या है जिसे 'X' के रूप में दर्शाया
गया
है? | स्टार संपर्क | डेल्टा संपर्क | सहायक संपर्क | ओवर लोड रिले संपर्व | | 1 | | 8 What is the type of A.C motor stator winding? | Single layer basket
winding | Double layer basket winding | Involute coil winding | Diamond coil
winding | A.C मोटर स्टेटर वाइंडिंग का प्रकार क्या है? | सिंगल लेयर बास्केट
वाइंडिंग | डबल लेयर बास्केट
वाइंडिंग | जटिल कुंडल वाइंडिंग | हीरा कुंडल वाईडिंग | A | 1 | | 9 Which formula is used to calculate percentage slip of an AC 3 phase induction motor? | $\frac{N_S - N_r}{N_S} \times 100$ | $\frac{N_r - N_s}{N_s} \times 100$ | $\frac{N_S - N_r}{N_r} \times 100$ | $\frac{N_r - N_S}{N_r} \times 100$ | एसी 3 कला इंडक्शन मोटर की प्रतिशत स्लिप की
गणना करने के लिए किस सूत्र का उपयोग किया
जाता है? | $\frac{N_S - N_\Gamma}{N_S} \times 100$ | $\frac{N_r - N_s}{N_s} \times 100$ | $\frac{N_S - N_r}{N_r} \times 100$ | $\frac{N_r - N_s}{N_r} \times 100$ | A | 1 | | TOP START OR L2 | | | | | | | | | | | 1 |
--|---------------------------|--------------------------|-------------------------------|---|---|-----------------------------|------------------------------|---|--|---|---| | | | | | | | | | | | | | | 11 What is the phase displacement between windings in 3 phase motor? | 90° | 120° | 180° | 360° | 3 कला मोटर में वाइडिंग के बीच कला विस्थापन
क्या है? | 90 ° | 120° | 180 ° | 360 ° | В | 1 | | 12 What is the name of the part marked as 'X'? | Shaft | Brushes | Bearings | Slip rings | 'एक्स' चिह्नित भाग का नाम क्या है? | शाफ़्ट | ब्रश | बियरिंग्स | स्लिप रिंग | D | 1 | | The second secon | | | | | | | | | | | | | 13 What is the name of AC coil winding? | alf coil winding | Whole coil winding | Single layer winding | Double layer
winding | AC काँइल वाइंडिंग का क्या नाम है? | आधा कुंडल वाइंडिंग | पूरे कुंडल वाइंडिंग | सिंगल लेयर वाइंडिंग | दोहरी परत वाइंडिंग | В | 1 | | | | | | | | | | | | | | | 14 What is the name of the coil winding? | oncentric coil
winding | Distributed coil winding | Mesh shaped coil winding | Diamond mesh shaped coil winding | कुंडली वाइंडिंग का नाम क्या है? | कंसींट्रेक कॉइल
वाइंडिंग | वितरित कुंडल
वाइंडिंग | जाल आकार की
कुंडल वाइंडिंग | हीरे की जाली के
आकार की कुंडल
वाइंडिंग | D | 1 | | X Y Z X X X X X X X X X X X X X X X X X | | | | | | | | | પારુ ા | | | | 15 Which speed is called as synchronous speed in 3 phase induction motor? | lo load speed | Full load speed | Rotating magnetic field speed | Relative speed
between stator and
rotor | 3 कला प्रेरण मोटर में किस गति को तुल्यकालिक
गति कहा जाता है? | शून्य भार गति | फुल लोड स्पीड | चुंबकीय क्षेत्र की गति
को घुमाते हुए | स्टेटर और रोटर के
बीच सापेक्ष गति | С | 1 | | 16 What is the name of the starter symbol? | D.O.L starter | Auto transformer starter | Automatic star/delta starter | Semi automatic
star/delta starter | स्टार्टर प्रतीक का नाम क्या है? | D.O.L स्टार्टर | ऑटो ट्रांसफार्मर
स्टार्टर | स्वचालित स्टार /
डेल्टा स्टार्टर | अर्ध स्वचालित स्टार /
डेल्टा स्टार्टर | В | 1 | | | | | | | | | | | | | | | 17 Name the part marked as 'X' of the winding machine? | Mandrel | Wire feed | Wire guides | Spool carrier | वाइंडिंग मशीन के भाग 'X' को चिह्नित करें? | खराद का धुरा | तार का चारा | तार गाइड | स्पूल वाहक | A | 1 | | X X | | | | | | | | | | | | | 18 What is the electrical degree of 6 pole stator of motor? | 360° | 720° | 1080° | 1440° | 6 पोल स्टेटर मोटर की विद्युत डिग्री क्या है? | 360 ° | 720 ° | 1080° | 1440 ° | С | 1 | | 19 Calculate the number of coils per phase per pair of poles of 3 phase motor having 2 pole, 24 slots,12 coils? | 1 | 2 | 3 | 4 | 2 ध्रुव, 24 खांचे, 12 कुंडली वाले 3 कला मोटर के
कुंडली की संख्या प्रति फेज़ प्रति पोलों का जोड़ा
की गणना करें? | 1 | 2 | 3 | 4 | D | 1 | |--|--|--|---|---|---|--|---|---|---|---|---| | What is the name of the starter symbol? | Star delta starter | Rheostatic starter | Direct on-line starter | Autotransformer
starter | स्टार्टर प्रतीक का नाम क्या है? | स्टार डेल्टा स्टार्टर | रेस्टोरेटिक स्टार्टर | प्रत्यक्ष ऑन लाइन
स्टार्टर | ऑटोट्रांसफॉमेर स्टार्टर | A | 1 | | 21 What is the formula to calculate pitch factor? | Pitch factor = | Pitch factor = | Pitch factor = | Pitch factor = | पिच कारक की गणना करने का सूत्र क्या है? | पिच कारक = | पिच कारक = | पिच कारक = | पिच कारक = | В | 1 | | · | Pole pitch | Winding pitch | Number of slots | Number of poles | | Pole pitch | Winding pitch | Number of slots | Number of poles | | | | | Winding pitch | Pole pitch | Number of poles | Number of slots | | Winding pitch | Pole pitch | Number of poles | Number of slots | | | | 22 How pole pitch is measured in terms of slots in | | | | | पोल वाइंडिंग को एसी वाइंडिंग में स्लॉट के संदर्भ | | | | | С | 1 | | AC winding? | Total electrical degree | Number of slots | No. of slots in the stator | No. of poles | 🔔 में कैसे मापा जाता है? | Total electrical degree | Number of slots | No. of slots in the stator | No. of poles | | ' | | | Number of slots | Total electrical degree | No. of poles | No. of slots in the stato | | Number of slots | Total electrical degree | No. of poles | No. of slots in the stator | | | | 23 What is the formula to calculate the mean circumference of the coil? | $L_{\rm m} = \underline{L_{\rm out} - L_{\rm in}}_{\rm 2} \rm cm$ | $L_{m} = L_{in} + L_{out} cm$ | $L_{m} = \frac{2}{L_{out} - L_{in}} cm$ | $L_{m} = \frac{2}{L_{in} + L_{out}} cm$ | कॉइल की ओसत परिधि की गणना करने का सूत्र
क्या है? | L _m = <u>L_{out}</u> - 祖捐 | $L_{m} = \underbrace{L_{in} + L_{out}}_{2}$ | $L_m = \frac{2 \overline{H}}{L_{out} - L_{in}}$ | $L_m = 2 संमी $ $L_{in} + L_{out}$ | В | 1 | | 24 What is the synchronous speed of a A.C 3 phase induction motor having 6 poles at a frequency of 50 Hertz? | 800 rpm | 1000 rpm | 1200 rpm | 1440 rpm | 50 हर्ट्ज की आवृत्ति पर 6 ध्रुव वाले A.C 3 कला
प्रेरण मोटर की तुल्यकालिक गति क्या है? | 800 आरपीएम | 1000 आरपीएम | 1200 आरपीएम | 1440 आरपीएम | В | 2 | | 25 Calculate the percentage slip in a 3 phase induction motor having 6 poles with a frequency of 50 Hertz rotating with actual speed of 960 rpm? | 2% | 3% | 4% | 5% | 3 कला इंडक्शन मोटर में प्रतिशत स्लिप की
गणना करें, जिसमें 50 हर्ट्ज़ की आवृत्ति के साथ 6
ध्रुव होते हैं, जो 960 आरपीएम की वास्तविक गति
के साथ घूमते हैं? | 2% | 3% | 4% | 5% | С | 2 | | 26 What is the rotor frequency of a 3 phase squirrel cage induction motor at the time of starting? | Equal to supply frequency | 3 times less than supply frequency | 3 times more than supply frequency | √3 times less than supply frequency | 3 कला की स्क्रिरल केज प्रेरण मोटर की रोटर
आवृत्ति क्या है? | आपूर्ति की आवृत्ति के
बराबर | आपूर्ति आवृत्ति से 3
गुना कम है | आपूर्ति आवृत्ति से 3
गुना अधिक | आपूर्ति की आवृत्ति से
कई √3 गुना कम है | А | 2 | | 27 How the voltage is received in the rotor of induction motor? | Direct connection from stator | Due to back emf produced in stator | Direct connection to rotor from supply | By the transformer action of stator and rotor | इंडक्शन मोटर के रोटर में वोल्टेज कैसे प्राप्त होता
है? | स्टेटर से सीधा संबंध | स्टेटर में उत्पादित
बैक ईएमएफ के
कारण | आपूर्ति से रोटर का
सीधा संबंध | स्टेटर और रोटर का
ट्रांसफार्मर कार्य द्वारा | D | 2 | | 28 Which method is applied to control the speed of 3 phase squirrel cage induction motor from its rotor side? | Cascade operation | Changing applied voltage | Changing applied frequency | Changing the number of poles | अपने रोटर पक्ष से 3 कला स्क्विरल केज प्रेरण
मोटर की गति को नियंत्रित करने के लिए कौन सी
विधि आरोपित की जाती है? | कैस्केड संचालन | आरोपित वोल्टेज
बदल रहा है | आरोपित आवृत्ति में
परिवर्तन | ध्रुवों की संख्या बदलना | A | 2 | | 29 Which loss of 3 phase induction motor is determined by blocked rotor test? | Copper loss | Friction loss | Hysteresis loss | Eddy current loss | अवरुद्ध रोटर परीक्षण द्वारा 3 कला प्रेरण मोटर
का कौन सा नुकसान निर्धारित किया जाता है? | कॉपर की कमी | घर्षण हानि | हिस्टैरिसीस हानि | भंवर धारा हानि | A | 2 | | 30 Why pre heating is necessary for motors before varnishing in rewinding
process? | To dry the varnish quickly in winding | To easy flow of
varnish in the
winding | To increase the insulation resistance value | To drive out the moisture in between winding layers | रिवाइंडिंग प्रक्रिया में वार्निशिंग से पहले मोटर के
लिए प्री हीटिंग क्यों आवश्यक है? | वाइंडिंग में वानिश को
जल्दी से सुखाने के
लिए | वाइंडिंग में वार्निश के
आसान प्रवाह के लिए | इन्सुलेशन प्रतिरोध
मूल्य बढ़ाने के लिए | वाइंडिंग परतों के बीच
की नमी को बाहर
निकालने के लिए | D | 2 | | 31 Which type of test is conducted using internal growler in AC motor winding? | Ground test | Polarity test | Continuity test | Short circuit test | एसी मोटर वाइंडिंग में आंतरिक ग्राउलर का
उपयोग करके किस प्रकार का परीक्षण किया
जाता है? | ग्राउंड टेस्ट | ध्रुवता टेस्ट | निरंतरता परीक्षण | शॉर्ट सिकेट टेस्ट | D | 2 | | 32 Which device is used to test startor winding short and open fault? | Tong Tester | Internal Growler | External Growler | Digital multimeter | स्टार्टर वाइंडिंग शॉर्ट और ओपन फॉल्ट का
परीक्षण करने के लिए किस उपकरण का उपयोग
किया जाता है? | टोंग परीक्षक | आंतरिक ग्राउलर | बाहरी ग्राउलर | डिज़िटल मल्टीमीटर | В | 2 | | 33 What is the purpose of using thermal cutout in addition to fuse in A.C motor circuit? | Protect from heavy
load | Protect against high voltage | Allow for continuous over loading | Protect against dead short circuit | A.C मोटर सकिट में फ्यूज के अलावा थर्मल
कटआउट का उपयोग करने का उद्देश्य क्या है? | भारी भार से रक्षा करें | हाई वोल्टेज से बचाव
करें | लगातार ओवर लोडिंग
की अनुमति दें | मृत शॉर्ट सकिट से
बचाएं | С | 2 | | Which type of motor is used to provide high starting torque at variable speed? | Universal motor | Permanent capacitor motor | 3 Phase slip ring induction motor | 3 Phase single
squirrel cage
induction motor | परिवर्तित गति पर उच्च प्रारंभिक बलाघूर्ण प्रदान
करने के लिए किस प्रकार की मोटर का उपयोग
किया जाता है? | यूनिवर्सल मोटर | स्थायी संधारित्र मोटर | 3 कला स्लिप रिंग
प्रेरण मोटर | 3 कला एकल स्क्विरल
केज प्रेरण मोटर | С | 2 | | 35 What is the relation between torque and slip in an A.C induction motor? | Slip increases torque decreases | Slip increases torque increases | Slip decreases torque increases | Slip decreases torque decreases | A.C इंडक्शन मोटर में बलाघूर्णऔर स्लिप के बीच
क्या संबंध है? | स्लिप बढ़ने से
बलाघूर्णघटता है | स्लिप बढ़ने से
बलाघूर्णबढ़ता है | स्लिप घटने से
बलाघूर्णबढ़ता है | स्लिप घटने से
बलाघूर्णघटता है | В | 2 | |--|-----------------------------------|-----------------------------------|-----------------------------------|---|---|-----------------------------------|-------------------------------------|---------------------------------------|---|---|---| | 36 What is effect of A.C induction motor if rotor bar is in open circuit? | Vibration of shaft | Motor will not start | Runs in slow speed | Over heating of motor | यदि खुले सिकेट में रोटर बार हो तो A.C इंडक्शन
मोटर का क्या प्रभाव होता है? | शाफ़्ट का कंपन | मोटर शुरू नहीं होगी | धीमी गति में चलता है | मोटर के अतिगर्म होने
पर | D | 2 | | 37 Which type of wire is used for rewinding of A.C 3 phase motors? | Super enamelled copper wire | PVC covered copper winding wire | Single cotton covered copper wire | Double cotton covered copper wire | A.C 3 फेज मोटरों के रिवाइंडिंग के लिए किस
प्रकार के तार का उपयोग किया जाता है? | सुपर एनामेल्ड कॉपर
वायर | पीवीसी कवर तांबे
वाइंडिंग तार | सिंगल कपास कवर
कॉपर वायर | डबल कपास कवर
तांबे के तार | A | 2 | | 38 Which material is used as wedges in winding process? | Empire | Cotton | Bamboo | Terylene | वाइंडिंग प्रक्रिया में वेजेज के रूप में किस सामग्री
का उपयोग किया जाता है? | एम्पायर | कपास | बांस | टेरीलीन | С | 2 | | 39 Which test in winding is essential before giving supply? | Ground test | Polarity test | Open circuit test | Short circuit test | आपूर्ति देने से पहले वाइंडिंग में कौन सा परीक्षण
आवश्यक है? | ग्राउंड टेस्ट | पोलरिटी टेस्ट | ओपन सर्किट टेस्ट | शॉर्ट सिकेट टेस्ट | В | 2 | | 40 Why the rotor bars are mounted in a slightly skewed position in 3 phase motor? | Generate maximum flux | Reduce the stray losses | Maintain the rotor speed constant | Produce more uniform rotor field and torque | रोटर चालकों को 3 कला मोटर में थोड़ी तिरछी
स्थिति में क्यों रखा जाता है? | अधिकतम फ्लक्स
उत्पन्न करें | स्ट्रे हानि कम करें | रोटर गति को स्थिर
बनाए रखें | अधिक समान रोटर
क्षेत्र और बलाघूर्णका
उत्पादन करें | D | 2 | | 41 Which loss is determined by no load test of 3 phase induction motor? | Iron loss | Copper loss | Friction loss | Windage loss | 3 कला इंडक्शन मोटर के नो लोड टेस्ट से कौन
सी हानि निर्धारित होती है? | लौह हानि | ताम्र हानि | घर्षण हानि | वायु हानि | A | 2 | | Which method of speed control two variable speeds only obtained in 3 phase motor? | By rotor rheostat control | By changing applied frequency | By changing the applied voltage | By changing the number of stator poles | 3 कला मोटर में गति को नियंत्रित करने की कौन
सी विधि में केवल दो चर गति प्राप्त होती है? | रोटर रिओस्टेट
नियंत्रण द्वारा | आरोपित आवृत्ति
बदलकर | आरोपित वोल्टेज को
बदलकर | स्टेटर ध्रुवों की संख्या
को बदलकर | D | 2 | | 43 Why slip ring induction motor is fitted with wound rotor? | To reduce the slip | To control the speed | To reduce the losses | To get high starting and running torque | स्लिप रिंग इंडक्शन मोटर को वाउंड रोटर से क्यों
फिट किया जाता है? | स्लिप कम करना | गति को नियंत्रित
करने के लिए | हानि को कम करने
के लिए | उच्च स्टाटिंग और
रनिंग बलाघूर्णपाने के
लिए | D | 2 | | 44 What is the function of timer in automatic star delta starter? | Trip at over load | Switch ON at pre
set time | Change from star to delta | Switch OFF at pre
set time | स्वचालित स्टार डेल्टा स्टार्टर में टाइमर का कार्य
क्या है? | ओवर लोड पर ट्रिप | पूर्व निर्धारित समय पर
चालू करें | स्टार से डेल्टा में बदलें | पूर्व निधीरित समय पर
स्विच ऑफ करें | С | 2 | | Which instrument is used to measure insulation resistance of a 3 phase induction motor? | Megger | Multimeter | Shunt type
ohmmeter | Series type
ohmmeter | 3 कला प्रेरण मोटर के इन्सुलेशन प्रतिरोध को
मापने के लिए किस उपकरण का उपयोग किया
जाता है? | मेगर | मल्टीमीटर | शंट टाइप ओह्ममीटर | श्रेणी प्रकार ओह्ममीटर | A | 2 | | 46 Which test in winding is illustrated? | Polarity test | Ground test | Continuity test | Short circuit test | वाइंडिंग में कौन सा परीक्षण सचित्र है? | ध्रुवता टेस्ट | ग्राउंड टेस्ट | निरंतरता परीक्षण | शॉर्ट सिकेट टेस्ट | A | 2 | | 47 What is the starting current of an A.C 3 phase induction motor? | 1 to 2 times of full load current | 2 to 3 times of full load current | 4 to 5 times of full load current | 5 to 6 times of full load current | A.C 3 फेज इंडक्शन मोटर का प्रारंभिक करंट
क्या है? | पूर्ण भार धारा का 1 से
2 गुना | पूर्ण भार धारा का 2 से
3 गुना | पूर्ण भार धारा का 4 से
5 गुना | पूर्ण भार धारा का 5 से
6 गुना | D | 2 | | 48 Which method is used to control the speed of 3 phase induction motor from stator side? | By cascade operation | By rotor rheostat control | By injecting emf in rotor circuit | By changing the applied frequency | स्टेटर साइड से 3 कला इंडक्शन मोटर की गति
को नियंत्रित करने के लिए किस विधि का उपयोग
किया जाता है? | कैस्केड ऑपरेशन
द्वारा | रोटर रिओस्टेट
नियंत्रण द्वारा | रोटर सर्किट में
ईएमएफ इंजेक्ट करके | आरोपित आवृत्ति
बदलकर | D | 2 | | 49 What is the speed control method of 3 phase induction motor? SUP-RINGS MOTOR A MOTOR B | Cascade operation method | Rotor rheostat
control method | Changing applied voltage method | Injecting emf in rotor circuit method | 3 कला प्रेरण मोटर की गति नियंत्रण विधि क्या है? | केस्केड संचालन विधि | रोटर रिओस्टेट
नियंत्रण विधि | आरोपित वोल्टेज
बदलना विधि | रोटर सिकेट विधि में
ईएमएफ
इंजेक्शन | A | 2 | | What are the two functional circuits incorporated with a three phase motor starter? | Open circuit and short circuit | Closed circuit and open circuit | Short circuit and closed circuit | Control circuit and power circuit | तीन कला मोटर स्टार्टर के साथ शामिल दो
कार्यात्मक सर्किट क्या हैं? | ओपन सर्किट और
शॉर्ट सर्किट | क्लोज सर्किट और
ओपन सर्किट | शॉर्ट सर्किट और
क्लोज सर्किट | नियंत्रण सर्किट और
पावर सर्किट | D | 2 | | | | | | Τ | | 1 3 0 | | | | | | |---|-------------------------------------|---------------------------------------|---|---|--|--|--|---|--|---|---| | 51 Which is the main property of leatheroid paper insulation? | Non moisturized
material | Highly non-
hygroscopic | Very good for class
F insulation | Better ageing and dielectric strength | लेदरॉइड पेपर इन्सुलेशन का मुख्य गुण कौन सा
है? | गैर मॉइस्चराइज्ड
सामग्री | अत्यधिक गैर-
हाइग्रोस्कोपिक | श्रेणी एफ इन्सुलेशन
के लिए बहुत अच्छा है | बेहतर एजिंग और
परावैद्युत शक्ति | D | 2 | | 52 Which type of insulating material is selected for binding the coils and over hangs? | Cotton sleeves | Empire sleeves | Terylene thread | Fibre glass tape | कुंडल और ओवर हैंग बांधने के लिए किस प्रकार
की इंसुलेटिंग सामग्री का चयन किया जाता है? | सूती स्लीव्स | एम्पायर स्लीव्स | टेरेलीन धागा | फाइबर ग्लास टेप | С | 2 | | 53 Which insulation is used for cuffing in AC winding? | Fibre glass tape | Leatheroid paper | Empire fiber glass tape | Fabric based adhesive tape | एसी वाइंडिंग में कर्फिंग के लिए किस इंसुलेशन
का उपयोग किया जाता है? | फाइबर ग्लास टेप | चमड़े का कागज | एम्पायर फाइबर
ग्लास टेप | कपड़े पर आधारित
चिपकने वाला टेप | D | 2 | | 54 What refers coil in AC winding? | Number of turns connected in series | Number of turns connected in parallel | Number of turns
under two similar
poles | Number of turns
under two dissimilar
poles | एसी वाइंडिंग में कॉइल को क्या कहते हैं? | श्रेणी में जुड़े घुमावों
की संख्या | समानांतर में जुड़े
घुमावों की संख्या | दो समान ध्रुवों के
अंतर्गत घुमावों की
संख्या | दो असमान ध्रुवों के
अंतर्गत घुमावों की
संख्या | А | 2 | | 55 Which type of AC winding the number of coil/pole/phase is more than one at different pitches? | Involute coil winding | Diamond coil winding | Flat loop over lapped winding | Flat loop non-over lapped winding | किस प्रकार की एसी वाइंडिंग की विभिन्न पिचों पर
कुंडली / पोल / कला की संख्या एक से अधिक है? | | | लैप्ड वाइंडिंग पर
फ्लैट लूप | फ्लैट लूप नॉन-ओवर
लैप्ड वाइंडिंग | D | 2 | | 56 Calculate the number of coils /phase/ pole for a 3 phase double layer distributed winding for a motor having 36 slots, 36 coils and 4 poles? | 3 coils /phase/ pole | 6 coils / phase/pole | 9 coils / phase/pole | 12 coils/ phase/ pole | 36 स्लॉट्स, 36 कॉइल्स और 4 पोल वाले मोटर
के लिए 3 कला डबल परत वितरित वाइंडिंग के
लिए कॉइल की संख्या / कला / पोल की गणना
करें? | 3 कॉइल / कला / पोल | ६ कॉइल / कला / पोल | 9 कॉइल / कला / पोल | 12 कॉइल / कला /
पोल | А | 2 | | 57 What is the type of rewinding process? | Hand winding | Skein winding | Former winding | Machine winding | रिवाइंडिंग प्रक्रिया का प्रकार क्या है? | हाथ से लपेटना | स्कीइन वाइंडिंग | फॉमेर वाइंडिंग | मशीन वाइंडिंग | A | 2 | | 58 Which type of starter is used to start and run the 3 phase slip ring induction motor? | Direct on-line starter | Rotor rheostat
starter | Auto transformer starter | Manual star-delta
starter | 3 फेज स्लिप रिंग इंडक्शन मोटर को शुरू करने
और चलाने के लिए किस प्रकार के स्टार्टर का
उपयोग किया जाता है? | प्रत्यक्ष ऑन लाइन
स्टार्टर | रोटर रियोस्टैट स्टार्टर | ऑटो ट्रांसफार्मर
स्टार्टर | मैनुअल स्टार-डेल्टा
स्टार्टर | В | 2 | | 59 What is the function of collar? | Provides insulation around field | Provides insulation for coil tapping | Helps tightening
material for flange | Provides insulation
for heat transfer
from coil | कॉलर का कार्य क्या है? | क्षेत्र के चारों और
इन्सुलेशन प्रदान
करता है | कुंडल टेपिंग के लिए
इन्सुलेशन प्रदान
करता है | निकले हुए किनारे के
लिए सामग्री को कसने
में मदद करता है | कुंडल से ऊष्मा
स्थास्तांतरण के लिए
इन्सुलेशन प्रदान
करता है | A | 2 | | 60 Which type of winding wire is used to wind submersible pump motors? | PVC covered type | Terylene thread type | Super enamelled type | Double cotton covered type | किस प्रकार के वाइंडिंग तार को सबमसिबल पंप
मोटर्स को वाइंडिंग करने के लिए उपयोग किया
जाता है? | पीवीसी कवर प्रकार | टेरलीन थ्रेड प्रकार | सुपर एनामेल्ड टाइप | डबल सूती कवर
प्रकार | A | 2 | | 61 What is the reason of long chord winding is avoided in AC motors? | Low efficiency | Low starting torque | More winding wire required | Less heat
dissipation | एसी मोटरों में लंबी कॉर्ड वाइंडिंग न करने का क्या
कारण है? | कम दक्षता | कम शुरुआती बलाघूर्ण | अधिक वाइंडिंग तार
की आवश्यकता | कम गर्मी अपव्यय | С | 2 | | 62 Which type of winding has more space for cooling? | Between overhanging coils | Between overhanging coil and rotor | Between overhanging coils and yoke | Between
overhanging coil
and wedge | शीतलन के लिए किस प्रकार की वाइंडिंग में
अधिक जगह है? | ओवरहैंगिंग कॉइल के
बीच | ओवरहैंगिंग कॉइल
और रोटर के बीच | ओवरहैंगिंग कॉइल
और योक के बीच | ओवरहैंगिंग कॉइल
और वेज के बीच | С | 2 | | 63 Where the panel boards are used? | Industrial motor drives | Domestic wiring circuits | 3 phase domestic wiring | Load distribution for AC & DC supply | पैनल बोर्ड कहां उपयोग किए जाते हैं? | औद्योगिक मोटर ड्राइव | घरेलू वायरिंग सर्किट | 3 कला घरेलू वायरिंग | एसी और डीसी
आपूर्ति के लिए लोड
वितरण | С | 2 | | 64 Determine the torque in newton metres produced by a 7.5 HP squirrel cage motor rotating at 1440 rpm? | 21.63 Nm | 24.4 Nm | 33.05 Nm | 36.6 Nm | 1440 rpm पर घूर्णन कर रहे 7.5 HP स्क्विरल
केज मोटर द्वारा निर्मित बलाघूर्ण न्यूटन मीटर में
ज्ञात करें? | 21.63 Nm | 24.4 Nm | 33.05 Nm | 36.6 Nm | D | 2 | | 65 Which type of handle design of rotary switch is illustrated? | Knob | Lever | Coin slot | Key operation | रोटरी स्विच के किस प्रकार के डिजाइन का सचित्र
वर्णन किया गया है? | दस्ता | उत्तोलक | सिक्के का स्लॉट | कुंजी संचालन | С | 2 | |---|----------------------------|------------------------------|---|---|--|------------------------------------|---|---|--|---|---| | | | | | | | | | | | | | | 66 What is the purpose of using rotor resistance starter to start 3 phase slip ring induction motor? | Reduce rotor voltage | Reduce rotor current | Increase the torque | Reduce the power loss | 3 कला स्लिप रिंग इंडक्शन मोटर शुरू करने के
लिए रोटर प्रतिरोध स्टार्टर का उपयोग करने का
उद्देश्य क्या है? | रोटर वोल्टेज कम करें | रोटर करंट को कम
करें | बलाघूर्ण को बढ़ाएं | बिजली की कमी को
कम करें | С | 2 | | 67 Which method of speed control is only applicable for 3 phase slipring induction motor? | Cascade operation method | Rotor rheostat speed control | Changing the applied frequency method | Changing the number of stator poles method | गति नियंत्रण की कौन सी विधि केवल 3 कला की
स्लिप रिंग इंडक्शन मोटर के लिए आरोपित
है? | केस्केड संचालन विधि | रोटर रिओस्टेट गति
नियंत्रण | आरोपित आवृत्ति विधि
को बदलना | स्टेटर ध्रुव विधि की
संख्या को बदलना | В | 2 | | 68 What is the name of the winding? | Skew winding | Skein winding | Involute coil winding | Diamond coil
winding | वाइंडिंग का नाम क्या है? | तिरछी वाईडिंग | स्कीइन वाइंडिंग | जिटेल कुंडल वाईडिंग | हीरा कुंडल वाईडिंग | A | 2 | | 69 What is the name of 3 phase motor winding, if the coil pitch is less than pole pitch? | Full pitch winding | Whole coil winding | Long chorded winding | Short chorded winding | 3 कला मोटर वाइंडिंग का नाम क्या है, यदि
कुंडली पिच पोल पिच से कम है? | पूर्ण पिच वाइंडिंग | पूरे कुंडल वाइंडिंग | लंबी कॉर्डेड वाइंडिंग | शॉर्ट कॉर्डेड वाइंडिंग | D | 2 | | 70 Which is the demerit of 3 phase concentric winding? | More space is required | A stepped former is required | More difficult to shape the coils uniformly | It is not easy to
make the end
connection | 3 कला संकेंद्रित वाइंडिंग का अवगुण कौन सा है? | अधिक जगह की
आवश्यकता है | एक स्तेप्ड फॉर्मर की
आवश्यकता है | काँइल्स को समान
रूप से आकार देने के
लिए और अधिक
कठिन | अंत कनेक्शन बनाना
आसान नहीं है | В | 2 | | 71 What is the name of the diagram used for 3phase motor winding? POLE1 | Ring diagram | Development
diagram | Coil connection
diagram | End connection
diagram | 3phase मोटर वाइंडिंग के लिए प्रयुक्त आरेख का
नाम क्या है? | अँगूठी का आरेख | विकास आरेख | कुंडल कनेक्शन
आरेख | अंत कनेक्शन आरेख | А | 2 | | 72 Calculate the phase displacement in terms of slots for a 3 phase, 36 slots, 12 coils, 4 pole stator winding? | 3 slots | 4 slots | 6 slots | 8 slots | 3 कला, 36 स्लॉट, 12 कॉइल, 4 पोल स्टेटर
वाइंडिंग के लिए स्लॉट के संदर्भ में कला विस्थापन
की गणना करें? | 3 स्लॉट | 4 स्लॉट | ६ स्लॉट | 8 स्लॉट | С | 2 | | 73 Which type of AC motor winding having the number of coil/pole/phase
is more than one arranged in different slots? | Basket winding | Concentric winding | Distributed winding | Concentrated winding | कॉइल / पोल / कला की संख्या वाले एसी मोटर
वाइंडिंग किस प्रकार के अलग-अलग स्लॉट में
व्यवस्थित होते हैं? | टोकरी वाइंडिंग | संकेंद्रित वाइंडिंग | वितरित वाइंडिंग | एकाग्र वाइंडिंग | С | 2 | | 74 Which type of testing of winding is illustrated? | Polarity test | Resistance test | Short circuit test | Voltage drop test | वाइंडिंग के किस प्रकार के परीक्षण का चित्रण
किया गया है? | ध्रुवता टेस्ट | प्रतिरोध परीक्षण | शॉर्ट सर्किट टेस्ट | वोल्टेज ड्रॉप परीक्षण | В | 2 | | 75 Why external resistance is included in the rotor circuit at starting through 3 phase slipring induction motor starter? | To get high running torque | To get high starting torque | To reduce the load current | To get increased speed at starting | स्टार्टिंग में रोटर सर्किट में बाहरी प्रतिरोध को 3
फेज स्लिपरिंग इंडक्शन मोटर स्टार्टर के माध्यम
से क्यों शामिल किया गया है? | उच्च रनिंग बलाघूर्ण
पाने के लिए | उच्च प्रारंभिक
बलाघूर्ण प्राप्त करने
के लिए | लोड करंट को कम
करने के लिए | शुरू करने में उच्च
वृद्धि की गति प्राप्त
करने के लिए | В | 3 | | i | What is the effect of motor, if the rotor windings n slipring induction motor is open circuited at starting? | Will not run | Runs at slow speed | Runs at very high speed | Runs but not able to pull load | यदि स्लिप रिंग इंडक्शन मोटर में रोटर वाइंडिंग
खुले परिपथ में स्टार्टिंग किया जाता है, मोटर का
प्रभाव क्या होता है? | नहीं चलेगी | धीमी गति से चलती है | बहुत तेज गति से
चलती है | चलती है, लेकिन लोड
खींचने में सक्षम नहीं है | A | 3 | |---|---|-----------------------------------|---------------------------------------|---|--|--|--------------------------------------|-------------------------------------|---|--|---|---| | | What happens to a 3 phase induction motor if one phase fails during running? | Motor runs normally | Motor stop instantaneously | Motor runs slowly,
finally it burns | Motor runs with irregular speed | यदि एक कला चलने के दौरान विफल हो जाता है
तो 3 कला प्रेरण मोटर का क्या होता है? | मोटर सामान्य रूप से
चलती है | मोटर तुरंत बंद करो | मोटर धीरे-धीरे चलती
है, आखिरकार जल
जाती है | मोटर अनियमित गति
से चलती है | С | 3 | | | What is the effect on 3 phase induction motor if one phase is cut-off during running with load? | Motor stops at once | Motor will run
normally | Motor runs with
humming noise with
slow speed | Motor will run slow
speed but winding
will be burnt out
shortly | लोड के साथ चलने के दौरान एक कला कट-ऑफ
होने पर 3 कला इंडक्शन मोटर पर क्या प्रभाव
पड़ता है? | मोटर एक बार में रुक
जाती है | मोटर सामान्य रूप से
चलेगी | मोटर धीमी गति के
साथ गुनगुने शोर के
साथ चलती है | मोटर धीमी गति से
चलेगी लेकिन थोड़ी
ही देर में वाइंडिंग जल
जाएगी | D | 3 | | | What is the defect, if starter with single phasing preventer does not switch 'ON'? | Improper phase
sequence | Fluctuations in line voltage | Loose contact in supply lines | Wrong terminal connections at motor | एकल कलाबद्ध प्रिवेंटर के साथ स्टार्टर 'चालू' नहीं
होने पर क्या दोष है? | अनुचित कला क्रम | लाइन वोल्टेज में
उतार-चढ़ाव | आपूर्ति लाइनों में
ढीला संयोजन | मोटर पर गलत
टर्मिनल संयोजन | A | 3 | | | What is the defect in AC 3 phase induction motor runs at low speed if loaded? | Wrong motor connection | Wrong starter connection | Open circuit in rotor winding | Partially shorted stator winding | लोड होने पर एसी 3 फेज इंडक्शन मोटर में कम
गति पर चलने में दोष क्या है? | गलत मोटर कनेक्शन | गलत स्टार्टर कनेक्शन | रोटर वाइंडिंग में खुला
सर्किट | स्टेटर वाइंडिंग में
आंशिक रूप से
लघुपथन | D | 3 | | | Which fault condition thermal overload relay protects A.C induction motor? | Short circuit | Open circuit | Over current | Under voltage | कौन सी दोष स्थिति में थर्मल अधिभार रिले A.C
प्रेरण मोटर की रक्षा करता है? | शार्ट सकिट | खुला परिपथ | अतिधारा | कम वोल्टेज | С | 3 | | | What happens to the rotor of a 3 phase induction motor if its speed attains to synchronous speed? | Rotor speed reduces | Rotor speed increases | Rotor speed remains same | Rotor bars get
damaged | यदि 3 कला इंडक्शन मोटर की रोटर
तुल्यकालिक गति को प्राप्त कर लेती है, तो रोटर
का क्या होता है? | रोटर की गति कम हो
जाती है | रोटर की गति बढ़
जाती है | रहती है | रोटर बार क्षतिग्रस्त हो
जाते हैं | D | 3 | | | What is the effect of open circuit in rotor of an nduction motor? | Motor does not start | Over heating in motor | Excess vibration of shaft | Motor runs with
very low speed | इंडक्शन मोटर के रोटर में खुले सकिट का क्या
प्रभाव होता है? | मोटर शुरू नहीं होती
है | मोटर में ओवर हीटिंग | शाफ्ट का अतिरिक्त
कंपन | मोटर बहुत कम गति
से चलती है | D | 3 | | | What is the reason for frequent blowing of fuse after motor running some time? | Improper earthing | Over loading of motor | Heavy voltage fluctuation | Poor insulation in winding | मोटर के कुछ समय चलने के बाद फ्यूज के
लगातार उड़ने का क्या कारण है? | अनुचित अर्थिंग | मोटर की ओवर
लोडिंग | भारी वोल्टेज उतार-
चढ़ाव | वाइंडिंग में खराब
इन्सुलेशन | D | 3 | | | What happens to a 3 phase induction motor, if one phase fails during starting? | Motor runs and stop immediately | Motor runs in slow speed continuously | Motor runs and draws more current | Motor continues to
run with irregular
speed | 3 कला प्रेरण मोटर का क्या होता है, अगर एक
कला शुरू होने के दौरान विफल हो जाता है? | मोटर चलती है और
तुरंत रुक जाती है | मोटर लगातार धीमी
गति में चलती है | मोटर चलती है और
अधिक धारा खींचती है | अनियमित गति से
मोटर चलती रहती है | A | 3 | | | Which is the cause for the 3 phase motor starter with single phase preventer trips frequently? | Incorrect fuse ratings | Unbalanced line voltage | Incorrect settings of OLR | Improper phase sequence | 3 फेज मोटर स्टार्टर का सिंगल फेज प्रिवेंटर के
साथ बार-बार ट्रिप का कारण कौन सा है? | गलत फ्यूज रेटिंग | असंतुलित लाइन
वोल्टेज | OLR की गलत सेटिंग | अनुचित कला क्रम | С | 3 | | i | What indication denotes the shorted coil defect n 3 phase motor stator winding while testing with nternal growler by keeping hacksaw blade? | Hacksaw blade gets
over heated | Rapid vibration of hacksaw blade | Hacksaw blade
repels against the
slots | Attracted by the winding turns on the slot | 3 कला मोटर स्टेटर वाइंडिंग में आंतरिक ग्राउलर
परीक्षण करते समय हैकसॉ ब्लेड रखकर
लघुपथित कुंडली दोष क्या प्रदर्शित करता है? | Hacksaw ब्लेड गर्म
हो जाता है | हेकसाँ ब्लेड का तेजी
से कंपन | हैकसाँ ब्लेड स्लॉट्स
के खिलाफ repels | स्लॉट पर वाइंडिंग
घुमाव से आकर्षित | В | 3 | | | | . | | | | NSQF - Module 4 - AC Single Phase Moto | | | T | | | | |----|---|-------------------------------------|--|-------------------------------------|---|--|------------------------------------|--------------------------------------|--------------------------------------|---|-----|--------| | # | Question | OPT A | ОРТ В | OPT C | OPT D | Question | OPT A | ОРТ В | OPT C | OPT D | Ans | Levels | | 1 | What is the working principle of single phase induction motor? | Lenz's law | Joule's law | Faraday's laws of electrolysis | Faraday's laws of electromagnetic induction | एकल चरण प्रेरण मोटर का कार्य सिद्धांत क्या है? | लेन्ज का नियम | जूल का नियम | फैराडे के विद्युत
अपघटन के नियम | फैराडे के विद्युत
चुम्बकीय प्रेरण के
नियम | A | 1 | | 2 | What is the name of single phase motor? | Permanent capacitor motor | Induction start
capacitor run motor | Capacitor start capacitor run motor | Capacitor start induction run motor | सिंगल फेज मोटर का क्या नाम है? | स्थायी संधारित्र मोटर | इंडक्शन स्टार्ट
कैपेसिटर रन मोटर | कैपेसिटर स्टार्ट
कैपेसिटर रन मोटर | कैपेसिटर स्टार्ट
इंडक्शन रन मोटर | A | 1 | | 3 | What is the working principle of split phase motor? | Lenz's law | Joule's law | Faraday's laws of electrolysis | Faraday's laws of electromagnetic induction | स्पीलीट चरण मोटर का कार्य सिद्धांत क्या है? | लेन्ज का नियम | जूल का नियम | फैराडे के विद्युत
अपघटन के नियम | फैराडे के विद्युत
चुम्बकीय प्रेरण के
नियम | A | 1 | | 4 | Which type of single phase motor is illustrated? | Universal motor | Permanent capacitor motor | Capacitor start induction run motor | Capacitor start capacitor run motor | एकल चरण मोटर किस प्रकार का निदर्शित है? | यूनिवर्सल मोटर | स्थायी संधारित्र मोटर | कैपेसिटर स्टार्ट
इंडक्शन रन मोटर | कैपेसिटर स्टार्ट
कैपेसिटर रन मोटर | D | 1 | | 5 | Which type of A.C single phase motor is classified under commutator motor type? | Stepper motor | Repulsion motor | Shaded pole motor | Permanent capacitor motor | ए सी सिंगल फेज मोटर किस प्रकार को कम्यूटेटर
मोटर प्रकार के तहत वर्गीकृत किया जाता है? | स्टेपर मोटर | प्रतिकर्षण मोटर | आच्छादित पोल मोटर | स्थायी संधारित्र मोटर | В | 2 | | 6 | Which method is adopted to start the single phase induction motor? | Split phase method | Varying supply voltage method | Reversal of input supply terminals | Reversal of running coil connection | सिंगल फेज इंडक्शन मोटर शुरू करने के लिए
कौन सी विधि अपनाई जाती है? | फेज़ विभाजन की
विधि | परिवर्ती आपूर्ति
वोल्टेज विधि | इनपुट आपूर्ति
टर्मिनलों का उल्टा | रनिंग
कुंडली
कनेक्शन का उलटा
करना | Α | 2 | | 7 | What is the type of A.C single phase motor? | Permanent capacitor motor | Capacitor start capacitor run motor | Induction start induction run motor | Capacitor start induction run motor | A.C सिंगल फेज मोटर का प्रकार क्या है? | स्थायी संधारित्र मोटर | कैपेसिटर स्टार्ट
कैपेसिटर रन मोटर | इंडक्शन स्टार्ट
इंडक्शन रन मोटर | कैपेसिटर स्टार्ट
इंडक्शन रन मोटर | D | 2 | | 8 | What is the purpose of the capacitor (C) in centrifugal switch speed control method of universal motor? | Maintain constant speed | Improve the power factor | Protect from the over loading | Reduce the sparks on the contacts | सार्वभौमिक मोटर के अपकेंद्री स्विच गति नियंत्रण
विधि में संधारित्र (C) का उद्देश्य क्या है? | निरंतर गति बनाए रखें | पावर फैक्टर में सुधार | ओवर लोडिंग से बचाएं | संपर्कों पर स्पार्क कम
करें | D | 2 | | 9 | Which type of winding wire is used for rewinding submersible pumps? | PVC covered copper wire | Super enamelled copper wire | Single cotton covered copper wire | Double cotton covered copper wire | सबमसिबल पंपों को रीवाइंड करने के लिए किस
प्रकार के वाइंडिंग तार का उपयोग किया जाता है? | पीवीसी कवर तांबे के
तार | सुपर एनामेल्ड कॉपर
वायर | सिंगल कॉटन कवर
कॉपर वायर | डबल कपास कवर
तांबे के तार | Α | 2 | | 10 | Which type of AC single phase motor having low starting torque? | Induction start induction run motor | Capacitor start induction run motor | Capacitor start capacitor run motor | Resistance start induction run motor | किस प्रकार के एसी सिंगल फेज मोटर में कम
स्टार्टिंग टॉर्क होता है? | इंडक्शन स्टार्ट
इंडक्शन रन मोटर | कैपेसिटर स्टार्ट
इंडक्शन रन मोटर | कैपेसिटर स्टार्ट
कैपेसिटर रन मोटर | प्रतिरोध स्टार्ट
इंडक्शन रन मोटर | D | 2 | | | What is the function of centrifugal switch in single phase motors? | Maintain constant speed | Break the starting winding | Break the running winding | | एकल चरण मोटर्स में अपकेंद्री स्विच का कार्य क्या
है? | | आरंभिक वाइंडिंग को
विसंयोजित करना | रनिंग वाइंडिंग को
विसंयोजित करना | मोटर को ओवर
लोडिंग से बचाएं | В | 2 | | 12 | Which is the application of universal motor? | Jet pump | Food mixer | Teleprinter | Compressor | सार्वभौमिक मोटर का अनुप्रयोग कौन सा है? | जेट पंप | भोजन मिक्सर | टेलीप्रिंटर | कंप्रेसर | В | 2 | | 13 Which single phase motor is fitted with wound | Repulsion motor | Shaded pole motor | Permanent | Capacitor start | वाउंड रोटर के साथ कौन सी एकल कला मोटर | प्रतिकर्षण मोटर | आन्छाटित पोल मोटर | स्थायी संधारित्र मोटर्स | संधारित्र प्रारंभ | Δ | 2 | |--|----------------------------------|--|--|---|---|---------------------------------|--|--|---|----|---| | rotor? | repulsion motor | Chiadea pole moter | capacitor motor | | फिट है? | ZIKITI T T III C | Thought litting | CHI CHIO | संधारित्र रन मोटर्स | ,, | | | 14 What is the relation between running winding and starting winding of a single phase induction motor with respect to resistance? | Both resistances will be equal | Running winding is
less, starting
winding more | Running winding is
more, starting
winding less | Running winding is less, starting winding infinity | प्रतिरोध के संबंध में एकल चरण इंडक्शन मोटर की
रनिंग वाइंडिंग और स्टार्टिंग वाइंडिंग के बीच क्या
संबंध है? | दोनों प्रतिरोध बराबर
होंगे | रनिंग वाइंडिंग कम
है, वाइंडिंग अधिक | रनिंग वाइंडिंग अधिक
है, स्टार्टिंग वाइंडिंग
कम | रनिंग वाईडिंग कम,
स्टार्टिंग वाइंडिंग अनंत | В | 2 | | 15 What is the function of the part marked as 'x' in shaded pole motor? | Increase the efficiency | Maintain constant speed | Initiate the rotor movement | Strengthen the magnetic field | आच्छादित पोल मोटर में 'x' के रूप में चिह्नित भाग
का कार्य क्या है? | दक्षता बढ़ाएं | निरंतर गति बनाए रखें | रोटर घुमाव शुरू करें | चुंबकीय क्षेत्र को
मजबूत करें | С | 2 | | 16 How the direction of rotation of a capacitor start induction run motor is reversed? | By changing the supply terminals | By changing the capacitor connections | By interchanging
main winding
terminals | By interchanging
both main and
auxiliary winding
terminals | कैपेसिटर स्टार्ट इंडक्शन रन मोटर के रोटेशन की
दिशा कैसे उलट जाती है? | आपूर्ति टमिनलों को
बदलकर | संधारित्र कनेक्शनों
को बदलकर | मुख्य वाईडिंग
टर्मिनलों को आपस में
बदल करके | दोनों मुख्य और
सहायक वाइंडिंग
टर्मिनलों को इंटरचेंज
करके | С | 2 | | 17 Which single phase motor tapped field speed control method is employed? | Universal motor | Shaded pole motor | Capacitor start induction run motor | Capacitor start capacitor run motor | किस एकल कला की मोटर में टेप फील्ड स्पीड
कंट्रोल विधि कार्यरत है? | यूनिवर्सल मोटर | आच्छादित पोल मोटर | कैपेसिटर स्टार्ट
इंडक्शन रन मोटर | कैपेसिटर स्टार्ट
कैपेसिटर रन मोटर | A | 2 | | 18 Which type of single phase induction motor is used in food mixer? | Universal motor | Repulsion motor | Shaded pole motor | Permanent capacitor motor | खाद्य मिक्सर में किस प्रकार की एकल चरण प्रेरण
मोटर का उपयोग किया जाता है? | यूनिवर्सल मोटर | प्रतिकर्षण मोटर | आच्छादित पोल मोटर | स्थायी संधारित्र मोटर | A | 2 | | 19 What is the angular displacement between starting and running winding of a single phase induction motor? | 45 electrical degree | 60 electrical degree | 90 electrical degree | 120 electrical
degree | एकल चरण प्रेरण मोटर की स्टाटिंग और रनिंग
वाइंडिंग के बीच कोणीय विस्थापन क्या है? | 45 इलेक्ट्रिकल डिग्री | 60 इलेक्ट्रिकल डिग्री | 90 इलेक्ट्रिकल डिग्री | 120 इलेक्ट्रिकल डिग्री | С | 2 | | 20 Why the hysteresis motor is suitable for sound recording instruments? | Small in size | High efficiency | Noiseless operation | Less error operation | ध्वनि रिकॉडिंग उपकरणों के लिए हिस्टैरिसीस
मोटर उपयुक्त क्यों है? | आकार में छोटा | उच्च दक्षता | शांत प्रचालन | कम त्रुटि प्रचालन | С | 2 | | 21 Which motor is preferred for domestic water pumps? | Universal Motor | Repulsion motor | Shaded pole motor | Capacitor start motor | घरेलू पानी पंपों के लिए कौन सी मोटर पसंद की
जाती है? | यूनिवर्सल मोटर | प्रतिकर्षण मोटर | आच्छादित पोल मोटर | संधारित्र प्रारंभ मोटर | D | 2 | | 22 Which type of motor has relatively small starting torque? | Universal motor | Capacitor start capacitor run motor | Capacitor start induction run motor | Resistance start induction run motor | किस प्रकार की मोटर में अपेक्षाकृत कम टॉर्क होता
है? | यूनिवर्सल मोटर | कैपेसिटर स्टार्ट
कैपेसिटर रन मोटर | कैपेसिटर स्टार्ट
इंडक्शन रन मोटर | प्रतिरोध शुरू
इंडक्शन रन मोटर | D | 2 | | 23 What is the function of centrifugal switch in split phase motor? | Protects from over current | Maintains constant speed | Protect the motor from over loading | Make and break the starting winding from supply | स्पीलीट कला मोटर में अपकेंद्री स्विच का कार्य क्या
है? | अति धारा से बचाता है | निरंतर गति बनाए
रखता है | मोटर को ओवर
लोडिंग से बचाएं | आपूर्ति से शुरुआती
वाइंडिंग बनाएं और
तोड़ें | D | 2 | | 24 How to produce starting torque in a shaded pole fan motor? | Using rings on poles | Using capacitor on winding circuits | Interchanging cage rotor windings by switch | Interchanging the field coil windings by switch | एक आच्छादित पोल पंखा मोटर में स्टाटिंग टाके
का उत्पादन कैसे करें? | ध्रुव पर छल्ले का
उपयोग करना | संधारित्र का उपयोग
करना | स्विच द्वारा केज रोटर
वाइन्डिंग को बदलना | स्विच द्वारा फ़ील्ड
कॉइल वाइंडिंग को
इंटरचेंज करना | A | 2 | | 25 What is the reason to use a permanent capacitor in fan motor circuit? | Speed regulation | Lower power consumption | Splitting of phase for torque | Controlling
electrical
interference | पंखा मोटर सकिट में एक स्थायी संधारित्र का
उपयोग करने का कारण क्या है? | गति नियमन | बिजली की कम खपत | टार्क के लिए कला का
विभाजन | विद्युत व्यतिकरण
को नियंत्रित करना | С | 2 | | 26 Which motor is having half coil winding? | Mixer | Grinder | Ceiling fan | Washing machine | कौन सी मोटर में आधी कुंडल वाइंडिंगर होती है? | मिक्सर | ग्राइंडर | छत का पंखा | वॉशिंग मशीन | С | 2 | | 27 Why running winding is placed in the bottom of the core? | To get low resistance | To get low inductance | To get high resistance | To get high inductance | रिनंग वाइंडिंग कोर के निचले भाग में क्यों रखी
जाती है? | कम प्रतिरोध पाने के
लिए | कम प्रेरण पाने के लिए | उच्च प्रतिरोध प्राप्त
करने के लिए | उच्च प्रेरण प्राप्त करने
के लिए | D | 2 | | 28 Calculate the slot distance for a ceiling fan having 28 slots, 14 poles, 14 coils in half coil connection? | 90° | 120° | 180° | 240° | आधे कुंडल कनेक्शन में 28 स्लॉट्स, 14 ध्रुव, 14
कॉइल वाले सीलिंग फैन के लिए स्लॉट की दूरी की
गणना करें? | 90° | 120 ° | 180° | 240 ° | A | 2 | | 29 What is the application of shaded pole motor? | Hair dryer | Ceiling fan | Wet grinder | Washing machine | आच्छादित पोल मोटर का अनुप्रयोग क्या है? | हेयर ड्रायर | <u>पंखा</u> | गीला ग्राइंडर | वॉशिंग मशीन | А | 2 | | 30 Which type of single phase motor is used for hard disk drives? | Stepper motor | Repulsion motor | Hysteresis motor | Reluctance motor | हार्ड डिस्क ड्राइव के लिए किस प्रकार की सिंगल
फेज मोटर का उपयोग किया जाता है? | स्टेपर मोटर | प्रतिकर्षण मोटर | हिस्टैरिसीस मोटर | रिलक्टेंस मोटर | Α | 2 | |---|---|--|---
--|--|---|---|--|--|---|---| | 31 What is the function of centrifugal switch used in capacitor start, capacitor run induction motor? | Disconnect the running winding after reached 75% to 80% speed | Disconnect the starting winding after reached 75% to 80% speed | Disconnect the
starting capacitor
after reached 75%
to 80% speed | Disconnect the starting and running winding after reached 75% to 80% speed | कैपेसिटर स्टार्ट, कैपेसिटर रन इंडक्शन मोटर में | 75% से 80% की
गति तक पहुंचने के
बाद चालू वाइंडिंग को
डिस्कनेक्ट करें | 75% से 80% की
गति तक पहुंचने के
बाद शुरुआती
वाइंडिंग को
डिस्कनेक्ट करें | 75% से 80% की
गति तक पहुंचने के
बाद शुरुआती
संधारित्र को
डिस्कनेक्ट करें | 75% से 80% की
गति तक पहुंचने के
बाद शुरू और चालू
वाइंडिंग को
डिस्कनेक्ट करें | С | 2 | | 32 Which type of single phase motor is having very high starting torque than any other type of single phase motor? | Universal motor | Reluctance motor | Repulsion start induction run motor | Capacitor start induction run motor | किस प्रकार की सिंगल फेज मोटर का किसी अन्य
प्रकार की सिंगल फेज मोटर की तुलना में बहुत
अधिक स्टार्टिंग टॉर्क है? | यूनिवर्सल मोटर | रिलक्टेंस मोटर | प्रतिकर्षण प्रारंभ प्रेरण
रन मोटर | कैपेसिटर स्टार्ट प्रेरण
रन मोटर | A | 2 | | 33 Where the capacitor is connected in a single phase permanent capacitor motor? | In series with starting winding | In series with running winding | In parallel with starting winding | In parallel with running winding | संधारित्र को एकल कला स्थायी संधारित्र मोटर में
कहाँ जोड़ा जाता है? | स्टार्टिंग वाइंडिंग के
साथ श्रृंखला में | रनिंग वाइंडिंग के
साथ श्रृंखला में | स्टार्टिंग वाइंडिंग के
साथ समानांतर में | समानांतर में रनिंग
वाइंडिंग के साथ | A | 2 | | 34 Which motor is used in table fan? | Universal motor | Shaded pole motor | Eddy current motor | Permanent capacitor motor | टेबल पंखे में किस मोटर का उपयोग किया जाता
है? | यूनिवर्सल मोटर | आच्छादित पोल मोटर | भंवर धारा मोटर | स्थायी संधारित्र मोटर | D | 2 | | What is the effect, if coil group connection is wrongly connected in a single phase motor rewinding? | Motor runs slowly | Motor will not run | Motor runs in very
high speed | Motor runs and takes more current at no load | एक एकल कला मोटर रिवाइंडिंग में कुंडल समूह
कनेक्शन गलत तरीके से जुड़ा हुआ है, तो क्या
प्रभाव है? | मोटर धीरे-धीरे चलती
है | मोटर नहीं चलेगी | मोटर बहुत तेज गति
में चलती है | मोटर चलती है और
बिना किसी लोड पर
अधिक धारा लेती है | В | 3 | | What is the effect in a repulsion motor, if the magnetic axis shifted to another side? | Direction of rotation
will change | Direction of rotation remains same | Motor speed increases from rated speed | Motor speed will
reduce from rated
speed | प्रतिकर्षण मोटर में क्या प्रभाव होता हैं, यदि
चुंबकीय अक्ष दूसरी तरफ स्थानांतरित हो जाता है? | रोटेशन की दिशा
बदल जाएगी | रोटेशन की दिशा
समान रहती है | मोटर की गति रेटेड
गति से बढ़ जाती है | मोटर की गति रेटेड
गति से कम हो जाएगी | A | 3 | | 37 What is the effect if the centrifugal switch is not disconnected after the motor starts? | Motor will run
normally | Motor will stop immediately | Starting winding will burn out | Motor will run very slow speed | मोटर शुरू होने के बाद अपकेंद्री स्विच को
डिस्कनेक्ट नहीं किया जाता है तो क्या प्रभाव पड़ता
है? | मोटर सामान्य रूप से
चलेगी | मोटर तुरंत बंद हो
जाएगी | स्टाटिंग वाइंडिंग जल
जायेगी | मोटर बहुत धीमी गति
से चलेगी | С | 3 | | 38 How the direction of rotation of repulsion motors is to be reversed? | By shifting the brush-
axis | By interchanging the
supply terminals | By changing the
main winding
terminals | By changing the compensating winding terminals | प्रितिकर्षण मोटर्स के रोटेशन की दिशा को कैसे
उल्टा करना है? | ब्रश-अक्ष को
स्थानांतरित करके | आपूर्ति टर्मिनलों को
आपस में बदल करके | मुख्य घुमावदार
टर्मिनलों को बदलकर | कम्पन्सेटिंग वाइंडिंग
टर्मिनलों को बदलकर | A | 3 | | 39 Why a capacitor is connected across centrifugal switch in the centrifugal switch speed control method? | To maintain constant speed | To protect from over loading | To improve the power factor | To reduce the sparks in contacts | क्यों एक संधारित्र अपकेंद्री स्विच गति नियंत्रण विधि
में अपकेंद्री स्विच से जुड़ा हुआ है? | निरंतर गति बनाए
रखने के लिए | ओवर लोडिंग से
बचाने के लिए | पॉवर फैक्टर को
बेहतर बनाने के लिए | संपर्कों में स्पार्क कम
करने के लिए | D | 3 | | What is the effect, if some slots in a split phase motor left out without winding after completion of concentric winding? | Works normally | Reduction in speed | Reduction in torque | Runs with very high speed | होने के बाद स्प्लिट फेज मोटर में कुछ स्लॉट बिना
वाइंडिंग के छोड़े गए हैं? | सामान्य रूप से काम
करता है | गति में कमी | टार्क में कमी | बहुत तेज गति से
दौड़ता है | A | 3 | | 41 How the radio interference can be suppressed in centrifugal switch method of speed control of universal motor? | By connecting capacitor across centrifugal switch | By connecting capacitor in series with centrifugal switch | By adding
compensating
winding with
armature | By connecting an inductor in series with centrifugal switch | सार्वभौमिक मोटर की गति नियंत्रण के अपकेंद्री
स्विच विधि में रेडियो व्यतिकरण को कैसे दबाया जा
सकता है? | अपकेंद्री स्विच के
दोनों ओर संधारित्र
जोड़कर | अपकेंद्री स्विच के
साथ श्रेणी में संधारित्र
को जोड़कर | कम्पन्सेटिंग
वाइंडिंगको आर्मेचर
के साथ जोड़कर | अपकेंद्री स्विच के
साथ श्रेणी में एक
इंडक्टर को जोड़कर | A | 3 | | Question | OPT A | ОРТ В | OPT C | OPT D | Question | OPT A | ОРТ В | OPT C | OPT D | Ans | Leve | |---|--|---|---|--|--|---|---|--|---|-----|------| | | | | | | | | | | | | | | 1 Which formula is used to calculate EMF/phase in a ideal alternator? | $E = \frac{\varphi \; FT}{2.22}$ | $E \ = \ \frac{\varphi \ FT}{4.44}$ | E = 2.22 φ FT | E = 4.44 φ FT | एक आदर्श अल्टरनेटर में EMF / फेज़
की गणना करने के लिए किस सूत्र का
उपयोग किया जाता है? | $E = \frac{\phi \; FT}{2.22}$ | $E = \frac{\varphi \; FT}{4.44}$ | E = 2.22 ¢ FT | E = 4.44 ¢ FT | D | 1 | | 2 Which rule is used to find the direction of induced emf in an alternator? | Cork screw rule | Right hand palm rule | Fleming's left hand rule | Fleming's right hand rule | अल्टरनेटर में प्रेरित ईएमएफ की दिशा
खोजने के लिए किस नियम का उपयोग
किया जाता है? | कॉर्क स्क्रू नियम | दाहिने हाथ की हथेली
 का नियम | फ्लेमिंग के बाएं हाथ
का नियम | फ्लीमेंग के दाहिने हाथ
का नियम | D | 1 | | 3 What is the name of the part of alternator? | Stator | Exciter | Salient pole rotor | Smooth cylindrical rotor | अल्टरनेटर के भाग का नाम क्या है? | स्टेटर | उत्तेजक | मुख्य ध्रुव रोटर | चिकना बेलनाकार रोटर | С | 1 | | 4 What is the formula to calculate emf equation of an alternator? | $E = 4.44 \text{ K}_{d} \text{ K}_{c} \text{ T } \phi_{m}$ | $E = 2.22 \text{ K}_{d} \text{ K}_{c} \text{ F} \phi_{m}$ | $E = 4.44 \text{ K}_{d} \text{ K}_{c} \text{ FT } \phi_{r}$ | _n E = 1.11 K _d K _c F φ _m | अल्टरनेटर के ईएमएफ समीकरण की
गणना करने का सूत्र क्या
है? | E = 4.44 K _d K _c T φ _m | $E = 2.22 \text{ K}_{d} \text{ K}_{c} \text{ F} \phi_{m}$ | $E = 4.44 \text{ K}_d \text{ K}_c \text{ FT}$ ϕ_m | E = 1.11 K _d K _c F φ _m | С | 1 | | 5 How alternators are rated? | KVA | KW | MW | KV | अल्टरनेटर को कैसे रेटेड किया जाता है? | केवीए | किलोवाट | मेगावाट | के वी | Α | 1 | | 6 Which formula is used to calculate the percentage voltage regulation in alternator? | $\frac{V_{FL} - V_{NL}}{V_{FL}} \times 100$ | $\frac{V_{NL} - V_{FL}}{V_{FL}} \times 100$ | $\frac{V_{NL} - V_{FL}}{V_{NL}} \times 100$ | $\frac{V_{FL} - V_{NL}}{V_{NL}} \times 100$ | अल्टरनेटर में प्रतिशत वोल्टेज विनियमन
की गणना करने के लिए किस सूत्र का
उपयोग किया जाता है? | $\frac{V_{FL} - V_{NL}}{V_{NL}} \times 100$ | $\frac{V_{NL} - V_{FL}}{V_{FL}} \times 100$ | $\frac{V_{NL} - V_{FL}}{V_{NL}} \times 100$ | $\frac{V_{FL} - V_{NL}}{V_{NL}} \times 100$ | В | 1 | | 7 What is the supply frequency of an alternator having 6 poles runs at 1000 rpm? | 25 Hz | 40 Hz | 50 Hz | 60 Hz | 1000 आरपीएम पर 6 ध्रुवों वाले एक
अल्टरनेटर की आपूर्ति आवृत्ति क्या है? | 25 हर्ट्ज | 40 हर्ट्ज | 50 हर्ट्ज | 60 हर्देज | С | 1 | | 8 Calculate the speed of an alternator having 2 poles at a frequency of 50 Hz? | 1500 rpm | 2500 rpm | 3000 rpm | 6000 rpm | 50 हर्ट्ज की आवृत्ति पर 2 ध्रुवाँ वाले एक
अल्टरनेटर की गति की गणना
करें? | 1500 आरपीएम | 2500 आरपीएम | 3000 आरपीएम | 6000 आरपीएम | С | 2 | | 9 What condition the lamps become dark in dark lamp method of parallel operation of two alternators? | Terminal voltages
are equal | Voltage and frequency are equal | Voltage and power rating are equal | Frequency are same in both alternator | दो अल्टरनेटरों के समानांतर संचालन के
डार्क लैंप विधि में लैंप किस स्थिति में बुझ
जाते
हैं? | टर्मिनल वोल्टेज बराबर
हैं | वोल्टेज और आवृत्ति
बराबर हैं | वोल्टेज और पावर
रेटिंग बराबर हैं | दोनों अल्टरनेटर में
आवृत्ति समान होती है | В | 2 | | How to compensate de-magnetizing effect due to armature reaction in an alternator? | Reducing the speed of alternator | Reducing field excitation current | Increasing field excitation current | Increasing the speed of alternator | अल्टरनेटर में आमेचर प्रतिक्रिया के
कारण डी-मैग्नेटाइजिंग प्रभाव की भरपाई
कैसे करें? | अल्टरनेटर की गति को
कम करना | फ़ील्ड उत्तेजना धारा
को कम करना | फ़ील्ड उत्तेजना धारा में
वृद्धि | अल्टरनेटर की गति
बढ़ाना | С | 2 | | 11 What is the use of synchroscope? | Adjust the output voltage | Adjust the phase sequence | Adjust the supply frequency | Indicate the correct instant for paralleling | सिंक्रोस्कोप का उपयोग क्या है? | आउटपुट वोल्टेज को
समायोजित करें | फेज़ अनुक्रम
समायोजित करें | आपूर्ति आवृत्ति
समायोजित करें | समानता के लिए सही
तुरंत संकेत दें | D | 2 | | What is the name of the equipment that provides D.C to the rotor of alternator? | Exciter | Inverter | Converter | Synchroniser | अल्टरनेटर के रोटर को D.C प्रदान करने
वाले उपकरणों का नाम क्या है? | उत्तेजक | इन्वर्टर | कनवर्टर | सिंक्रोनाइज़र | A | 2 | | 13 What is the purpose of damper winding in alternator? | Reduces the copper loss | Reduces windage losses | Reduces the hunting effect | Improves the voltage regulation | अल्टरनेटर में डैम्पर वाइंडिंग का उद्देश्य
क्या है? | तांबे के नुकसान को
कम करता है | वायु हानि को कम
करता है | हंटिंग के प्रभाव को
कम करता है | वोल्टेज विनियमन में
सुधार करता है | С | 2 | | Which condition is to be satisfied before parallel operation of alternators? | Rating must be same | Phase sequence must be same | Rotor impedance
must be same | Stator impedance
must be same | अल्टरनेटर के समानांतर संचालन से
पहले किस स्थिति को संतुष्ट किया जाना
है? | रेटिंग समान होनी
चाहिए | फेज़ अनुक्रम समान
होना चाहिए | रोटर प्रतिबाधा समान
होनी चाहिए | स्टेटर इम्पेडिंस समान
होना चाहिए | В | 2 | | 15 What is the speed of an alternator connected with a supply frequency of 50 Hz at rated voltage having 4 poles? | 1000 rpm | 1500 rpm | 3000 rpm | 4500 rpm | 4 पोल वाले रेटेड वोल्टेज पर 50 हर्ट्ज
की आपूर्ति आवृत्ति के साथ जुड़े एक
अल्टरनेटर की गति क्या है? | 1000 आरपीएम | 1500 आरपीएम | 3000 आरपीएम | 4500 आरपीएम | В | 2 | | ŀ | What condition the two lamps become bright and one lamp dark during paralleling of two alternators? | Terminal voltages
are equal | Voltages and frequencies are equal | Voltages and phase sequence are equal | Both the alternators receive same frequency | दो अल्टरनेटरों के समान्तर होने के दौरान
दो लैंप किस हालत में जलते हैं और एक
लैंप बुझ जाता है? | टिमिनल वोल्टेज बराबर
हैं | वोल्टेज और फ्रिकेंसी
बराबर हैं | वोल्टेज और फेज़
अनुक्रम बराबर हैं | दोनों अल्टरनेटर समान
आवृत्ति प्राप्त करते हैं | В | 2 | |--------|--|--|--|---|--|---|---|---|---|---|---|---| | l | What causes the terminal voltage of an alternator reduces, if the load increases? | Field resistance | Armature reaction | Inductive reactance | Armature resistance | यदि भार बढ़ता है, तो अल्टरनेटर का
टर्मिनल वोल्टेज कम हो जाता है? | क्षेत्र प्रतिरोध | आमैचर प्रतिक्रिया | प्रेरक प्रतिक्रिया | आमेचर प्रतिरोध | D | 2 | | | What is the purpose of using damper winding in AC generator? | Prevents heating | Reduces copper loss | Reduces windage loss | Prevents the hunting effect | AC जनरेटर में डैम्पर वाईडिंग का
उपयोग करने का उद्देश्य क्या है? | हीटिंग को रोकता है | तांबे के नुकसान को
कम करता है | नुकसान को कम
करता है | हंटिंग के प्रभाव को
रोकता है | D | 2 | | 19 \ | What is the type of alternator? MAIN ARMATURE EXCITER PIELD MAIN ARMATURE MAIN ARMATURE MAIN ARMATURE | Brushless alternator | Three phase
alternator | Single phase
alternator | Salient pole type
alternator | अल्टरनेटर का प्रकार क्या है? | ब्रश रहित अल्टरनेटर | तीन फेज़ अल्टरनेटर | एकल फेज़ अल्टरनेटर | सेलियंट ध्रुव प्रकार
अल्टरनेटर | A | 2 | | | Calculate the speed in r.p.s of the 2 pole, 50Hz alternator? | 50 rps | 100 rps | 1500 rps | 3000 rps | 2 पोल, 50Hz अल्टरनेटर के r.p.s में
गति की गणना करें? | 50 आरपीएस | 100 आरपीएस | 1500 आरपीएस | 3000 आरपीएस | Α | 2 | | | What is the advantage of using rotating field type alternator? | Easy to locate the faults in the field | Easy to connect the load with alternator | Easy to dissipate
the heat during
running | Two slip rings only required irrespective of No. of phases | घूर्णन क्षेत्र प्रकार अल्टरनेटर का उपयोग
करने का क्या फायदा है? | क्षेत्र में दोष का पता
लगाना आसान है | अल्टरनेटर के साथ
लोड को कनेक्ट करना
आसान है | दोड़ने के दोरान गर्मी
को फैलाना आसान | दो स्लिप रिंगों की
आवश्यकता होती है,
चाहे फेज़ों की संख्या
कितनी भी हो | D | 2 | | | What is the effect in increasing the field excitation current in alternator? | Prevents
demagnetizing | Over voltage protection | Dead short circuit protection | Alternator will be over loaded | अल्टरनेटर में फ़ील्ड उत्तेजना धारा को
बढ़ाने से क्या प्रभाव पड़ता है? | विचलन को रोकता है | अधिक वोल्टता से
संरक्षण | मृत शॉर्ट सिकेट संरक्षण | अल्टरनेटर ओवर
लोडेड होगा | A | 2 | | \ | Calculate the pitch factor (K_P) for a winding having 36 stator slots 4 pole with angle (α) is 30° in alternator? | 0.942 | 0.965 | 0.978 | 0.985 | अल्टरनेटर में 30° कोण (α) के साथ 36
स्टेटर स्लॉट 4 पोल वाले घुमावदार के
लिए पिच फैक्टर (KP) की गणना करें? | 0.942 | 0.965 | 0.978 | 0.985 | В | 3 | | | What is the cause for hunting effect in alternators? | Due to over load | Running without load | Running with fluctuation of speed | Due to continuous fluctuation in load | अल्टरनेटर में हंटिंग के प्रभाव का कारण
क्या है? | अधिक भार के कारण | बिना लोड के चल रहा है | गति के उतार-चढ़ाव के
साथ चल रहा है | लोड में निरंतर उतार-
चढ़ाव के कारण | D | 3 | | I
f | Calculate the voltage regulation in percentage if the load is removed from an alternator, the voltage rises from 480V to 660V? | 27.2% | 32.5% | 37.5% | 38.5% | यदि एक अल्टरनेटर से लोड हटा दिया
जाता है, तो वोल्टेज 480V से 660V तक
बढ़ जाता है, वोल्टेज विनियमन प्रतिशत
में गणना कीजिये? | 27.2% | 32.5% | 37.5% | 38.5% | С | 3 | | Question | OPT A | | OPT C | OPT D | NSQF - Module 6 - Synchronous Motor Question | OPT A | OPT B | OPT C | OPT D | Ans | Levels | |--|--------------------------|---------------------------|-----------------------------------|--|---|--------------------------------------|--------------------------------|--|---|------|--------| | Question | OFT A | OF I B | OF I C | OF 1 B | Question | OF LA | OFTB | OF 1 C | OF I B | Alls | Levels | | 1 What is the name of the converter? | Metal rectifier | Rotary converter | Mercury arc rectifier | Silicon controlled rectifier | कन्वटेर का नाम क्या है? | धातु दिष्टकारी | रोटरी कनवरेर | मरकरी आके दिष्टकारी | सिलिकॉन नियंत्रित
दिष्टकारी | D | 1 | | 3 PHASE AC VARIABLE TO VOLTAGE POWER (1) | | | | | | | | | | | | | 2 What is the name of the converter? | Metal rectifier | Rotary converter | Mercury arc rectifier |
Motor-Generator set | कन्वर्टर का नाम क्या है? | धातु दिष्टकारी | रोटरी कनवर्टर | मरकरी आर्क दिष्टकारी | मोटर-जनरेटर सेट | В | 1 | | S. PIVABLE STATE OLIV SLIP-PRIGIS STATE OLIV | | | | | | | | | | | | | 3 Why D.C supply is necessary for synchronous motor operation? | Reduce the losses | Start the motor initially | Run the motor with over load | Run the motor at synchronous speed | सिंक्रोनस मोटर ऑपरेशन के लिए D.C आपूर्ति
क्यों आवश्यक है? | हानियों को कम करें | शुरू में मोटर स्टार्ट करें | मोटर को ओवर लोड के
साथ चलाएं | मोटर को तुल्यकालिक
गति से चलाएं | D | 2 | | 4 Which acts as both inverter and converter? | Metal rectifier | Mercury arc rectifier | Semi conductor diode | Synchronous converter | जो इन्वरेर और कनवरेर दोनों के रूप में कार्य
करता है? | धातु दिष्टकारी | मरकरी आर्क दिष्टकारी | अर्धचालक डायोड | तुल्यकालिक कनवर्टर | D | 2 | | 5 What is the function of inverter? | Convert A.C to D.C | Convert D.C to A.C | Smoothening A.C | Convert pulsating | इन्वरेर का कार्य क्या है? | A.C को D.C में बदलना | D.C को A.C में बदलना | | Pulsating DC को
शुद्ध D.C में बदलें | В | 2 | | | | | sine wave | DC into pure D.C | | | | स्मूथ करना | शुद्ध D.C में बदलें | | | | 6 Which converting device can be over loaded? | Rectifier unit | Rotary converter | Motor generator set | Mercury arc rectifier | कोन सा परिवर्तक उपकरण ओवर लोड किया
जा सकता
है? | दिष्टकारी यूनिट | रोटरी कनवटेर | मोटर जनरेटर सेट | मरकरी आर्क दिष्टकारी | А | 2 | | 7 Why exciter is essential to run a synchronous motor? | Carry more load in motor | Improve the power factor | Reduce the losses in motor | Run the motor at synchronous speed | सिंक्रोनस मोटर को चलाने के लिए उत्तेजक क्यों
आवश्यक है? | मोटर में अधिक भार ले
जाएं | पावर फैक्टर में सुधार | मोटर में होने वाले
नुकसान को कम करें | मोटर को तुल्पकालिक
गति से चलाएं | D | 2 | | 8 Which application requires only DC? | Electroplating | Stepping up of voltage | Operating induction motor | Operating repulsion motor | किस एप्लिकेशन को केवल डीसी की
आवश्यकता है? | विद्युत लेपन | वोल्टेज बढ़ाना | इंडक्शन मोटर प्रचालन | प्रतिकर्षण मोटर प्रचालन | I A | 2 | | 9 Why the LED's are avoided as converters in rectifier diodes? | Heavily doped device | Very low power device | Designed for light emitting | Very sensitive to temperature | दिष्टकारी डायोड में एलईडी को कन्वर्टर्स के
रूप में क्यों टाला जाता है? | अधिक डोप्ड युक्ति | बहुत कम शक्ति युक्ति | प्रकाश उत्सर्जन के लिए
बनाया गया है | तापमान के प्रति बहुत
संवेदनशील | В | 2 | | 10 Which is the main application of synchronous motor? | Elevators | Paper rolling mills | AC to DC converter | Power factor correction device | सिंक्रोनस मोटर्स का मुख्य अनुप्रयोग कौन सा है? | लिफ्ट | कागज रोलिंग मिलीं | एसी से डीसी कनवरेर | पावर फैक्टर करेक्शन
डिवाइस | D | 2 | | 11 What is the advantage of motor generator set? | Noiseless | High efficiency | Low maintenance required | DC output voltage
can be easily
controlled | मोटर जनरेटर सेट का लाभ क्या है? | शोरहीन | उच्च दक्षता | कम रखरखाव की
आवश्यकता है | डीसी आउटपुट वोल्टेज
को आसानी से नियंत्रित
किया जा सकता है | D | 2 | | What is the function of the part marked as 'X' of the rotary converter? | Converts AC to DC | Reduces voltage
drop | Helps to deliver
without noise | Collects the delivered direct current | रोटरी कनवर्टर के भाग 'X' का क्या कार्य है? | एसी को डीसी में
परिवर्तित करता है | वेल्टिज ड्रॉप को कम
करता है | बिना शोर के आउटपुट
देने में मदद करता है | वितरित प्रत्यक्ष धारा
एकत्र करता है | D | 2 | | 1: | What is the purpose of damper winding in a synchronous motor at starting? | Produce high voltage to initiate the rotation | Produce high current to start rotate the motor | Produces torque
and runs near in
synchronous speed | Produce a high
magnetic-field to
maintain a constant
speed | शुरू में एक तुल्यकालिक मोटर में डैम्पर
वाइंडिंग का उद्देश्य क्या है? | रेटिशन शुरू करने के
लिए उच्च वोल्टेज का
उत्पादन करें | मोटर को घुमाने के लिए
उच्च धारा का उत्पादन
करें | टोक़ पैदा करता है और
तुल्यकालिक गति में
पास चलता है | एक नियत गति बनाए
रखने के लिए एक उच्च
चुंबकीय-क्षेत्र का निर्माण
करें | D | 2 | |----|---|---|--|--|---|--|--|---|---|---|---|---| | 14 | Why the synchronous motor fails to run at synchronous speed? | Insufficient excitation | Defective pony
motor | Open in damper
winding | Short in damper winding | सिंक्रोनस मोटर सिंक्रोनस गति से क्यों नहीं
चलती? | अपर्याप्त उत्तेजना | दोषपूर्ण पोनी मोटर | खुली डैम्पर वाइंडिंग | डेपर वाइंडिंग में शॉर्ट | Α | 3 | | 1 | How the synchronous motor is used as a synchronous condenser? | Varying the motor load | Varying the rotor excitation | Varying stator voltage in motor | Varying stator
current in motor | सिंक्रोनस मोटर को सिंक्रोनस कंडेनसर के रूप
में कैसे उपयोग किया जाता है? | मोटर लोड में बदलाव | रोटर उत्तेजना में बदलाव | मोटर में स्टेटर वोल्टेज
में बदलाव | मोटर में स्टेटर धारा में
बदलाव | В | 3 | | 10 | What is the function of damper windings in synchronous motor? | Maintain power factor | Excite the field winding | Maintain constant speed | Start the synchronous motor | तुल्यकालिक मोटर में डैम्पर वाइंडिंग्स का क्या
कार्य है? | पाँवर फैक्टर बनाए रखें | फ़ील्ड वाइंडिंग को
उत्तेजित करें | नियत गति बनाए रखें | सिंक्रोनस मोटर शुरू करें | D | 3 | | 1 | Which converter is having high efficiency? | SCR converter | Rotary converter | Motor generator set | Mercury arc rectifier | कौन से कनवर्टर में उच्च दक्षता है? | SCR कनवटेर | रोटरी कनवर्टर | मोटर जनरेटर सेट | मरकरी आर्क दिष्टकारी | A | 3 | | 18 | How synchronous motor works as a power factor corrector? | Varying the line voltage | Varying the field excitation | Increasing the speed of motor | Decreasing the speed of motor | कैसे तुल्यकालिक मोटर पावर फैक्टर सुधारक
के रूप में काम करता
है? | लाइन वोल्टेज में बदलाव | फ़ील्ड उत्तेजना में
बदलाव | मोटर की गति बढ़ाना | मोटर की गति घटाना | В | 3 |