Question	OPT A	ОРТ В		OPT D	1 3 rd Sem - NSQF - Module 1 - DC Ge Question	OPT A	ОРТ В	OPT C	OPT D	Ans	Levels
Question	OPTA	OPIB	OFIC	OPTD	Question	OFTA	OPTB	OFIC	OPID	Alis	Leveis
1 What is the name of the part marked as 'X' in DC generator?	Armature core	Brush	Commutator raiser		डीसी जनरेटर में 'X' के रूप में चिह्नित भाग का नाम क्या है?	आर्मेचर कोर	ब्रश	कम्युटेटर रेज़र	कम्यूटेटर खंड	С	1
2 What is the name of D.C generator?	Differential long shunt compound	Differential short shunt compound	Cumulative long shunt compound	Cumulative short shunt compound	D.C जनरेटर का नाम क्या है?	डिफरेंशियल लॉन्ग शंट कंपाउंड	डिफरेंशियल लघु शंट यौगिक	संचयी लंबी शंट यौगिक	संचयी लघु शंट यौगिक	A	1
3 Which rule is used to find the direction of induced emf in D.C generator?	Cork screw rule	Right hand palm rule	Fleming's left hand rule	Fleming's right hand rule	D.C जनरेटर में प्रेरित ईएमएफ की दिशा ज्ञात करने के लिए किस नियम का उपयोग किया जाता है?	कॉर्क स्क्रू नियम	दाहिने हाथ की हथेली का नियम	फ्लेमिंग के बाएं हाथ का नियम	फ्लेमिंग के दाहिने हाथ का नियम	D	1
4 Which formula is used to calculate the		Generated emf =	Generated emf =	Generated emf =	D.C जनरेटर में उत्पन्न ईएमएफ की गणना करने के लिए किस सूत्र का उपयोग किया	उत्पन्न ईएमएफ =	उत्पन्न ईएमएफ =	उत्पन्न ईएमएफ =	उत्पन्न ईएमएफ =	С	1
generated emf in D.C generator?	$\frac{\phi ZN}{60}$ Volt	$\frac{\phi ZN}{60} \times \frac{A}{P} \text{Volt}$	$\frac{\phi ZN}{60} x \frac{P}{A} Volt$	$\frac{ZN}{60 X \phi} x \frac{P}{A} Volt$	जाता है?	$\frac{\phi ZN}{60}$ Volt	$\frac{\phi ZN}{60} x \frac{A}{P} Volt$	$\frac{\phi ZN}{60} x \frac{P}{A} Volt$	$\frac{ZN}{60 X \phi} x \frac{P}{A} Volt$		
5 What is the formula to calculate back emf of a D.C motor?	$E_b = \frac{V}{I_a R_a}$ Volts	$E_b = V \times I_a R_a \text{ Volts}$	$E_b = V - I_a R_a \text{ Volts}$	$E_b = V + I_a R_a \text{ Volts}$	इएमएफ की गणना करने का सूत्र क्या है?	E _b <u>= V</u> वोल्ट I _a R _a	$E_b = V \times I_a R_a$ वोल्ट्स	$E_b = V - I_a R_a \overline{a}$	E _b = V + I _a R _a वोल्ट्स	С	1
6 What is the name of the part marked 'X' in DCgenerator?	Pole tip	Pole coil	Pole core	Pole shoe	DC Generator में 'X' के रूप में चिह्नित भाग का नाम क्या है?	ध्रुव की नोक	ध्रुव कुंडली	पोल कोर	पोल शू	D	1
What is the name of the D.C generator?	Shunt generator	Series generator	Compound generator	Separately excited generator	D.C जनरेटर का नाम क्या है?	शंट जनरेटर	श्रेणी जनरेटर	यौगिक जनरेटर	अलग से उतेजित जनरेटर	D	1
8 Which energy is converted into electrical energy by generator?	Heat	Kinetic	Chemical	Mechanical	जनरेटर द्वारा किस ऊर्जा को विद्युत ऊर्जा में परिवर्तित किया जाता है?	ऊष्मा	गतिशील	रासायनिक	यांत्रिक	D	1
9 What is the name of D.C generator's field?	Short shunt compound generator	Long shunt compound generator	Differential compound generator	Cumulative compound generator	D.C जनरेटर फील्ड का नाम क्या है?	लघु शंट यौगिक जनरेटर	लॉना शंट कंपाउंड जनरेटर	विभेदक यौगिक जनरेटर	संचयी यौगिक जनरेटर	D	1
The same of the sa											
10 What is the principle of D.C generator?	Cork screw rule	Fleming's left hand rule	Fleming's right hand rule	Faradays laws of electromagnetic induction	D.C जनरेटर का सिद्धांत क्या है?	कॉके स्क्रू नियम	फ्लेमिंग के बाएं हाथ का नियम	फ्लेमिंग के दाहिने हाथ का नियम	फैराडे का विद्युत चुम्बकीय प्रेरण का नियम	D	1
11 What is the formula for dynamically induced emf?	BLV volts	BL sinθ volts	BLV sinθ volts	BLV cosθ volts	गतिशील रूप से प्रेरित ईएमएफ के लिए सूत्र क्या है?	BLV वोल्ट	BL sin0 वोल्ट	BLV sin0 वोल्ट	BLV cos0 वोल्ट	С	1

12 Which rule is used to find direction of magnetic field?	Cork screw rule	Right hand palm rule	Fleming's left hand rule	Fleming's right hand rule	चुम्बकीय क्षेत्र की दिशा ज्ञात करने के लिए किस नियम का उपयोग किया जाता है?	कॉर्क स्क्रू नियम	दाहिने हाथ की हथेली का नियम	फ्लेमिंग के बाएं हाथ का नियम	फ्लेमिंग के दाहिने हाथ का नियम	D	1
13 What is the name of the part of DC generator?	Stator	Pole core	Pole shoes	Yoke (or) frame	डीसी जनरेटर के भाग का नाम क्या है?	स्टेटर	ध्रुव कोर	पोल शू	योक (या) फ्रेम	D	1
14 How many parallel paths in duplex lap winding of a 4 pole DC generator?	4	6	8	12	4 पोल डीसी जनरेटर के डुप्लेक्स लैप वाइंडिंग में कितने समानांतर रास्ते हैं?	4	6	8	12	С	1
15 Name the part of DC generator?	Side end plates	Pole shoe lamination	Commutator segment	Armature core lamination	डीसी जनरेटर के भाग का नाम बताइए?	साइड एंड प्लेट्स	पोल शू लेमिनेशन	कम्यूटेटर खंड	आर्मेचर कोर लेमिनेशन	D	1
16 How interpoles are connected in a DC generator?	In series with armature	In parallel with armature	In series with shunt field	In parallel with shunt field	डीसी जनरेटर में इंटरपोल कैसे जुड़े होते हैं?	आर्मेचर के साथ श्रृंखला में	आर्मेचर के साथ समानांतर में	शंट फ़ील्ड के साथ श्रृंखला में	शंट फील्ड के साथ समानांतर में	A	2
17 What is the necessity of residual magnetism in a self excited DC generator?	Build up the voltage	Reduce the field current	Reduce armature current	Maintain constant output voltage	एक स्वयं उत्तेजित डीसी जनरेटर में अवशिष्ट चुंबकत्व की आवश्यकता क्या है?	वोल्टेज का निर्माण करें	फ़ील्ड करंट कम करें	आमेचर करेंट कम करें	नियत आउटपुट वोल्टेज बनाए रखें	A	2
18 Which are the two points that the	Resistance between the opposite brushes	Resistance between brush and commutator raiser	Resistance between brush and commutator	Resistance between brush and armature conductors	D.C मशीनों में, वे कौन से दो बिंदु हैं जो ब्रश संपर्क प्रतिरोध को मापते हैं?	विपरीत ब्रश के बीच प्रतिरोध	ब्रश और कम्यूटेटर राइजर के बीच प्रतिरोध	ब्रश और कम्यूटेटर के बीच प्रतिरोध	ब्रश और आर्मेचर कंडक्टर के बीच प्रतिरोध	С	2
19 Which voltage drop is indicated in the portion marked as 'X'?	Full load voltage drop	Armature voltage drop	Armature reaction drop	Shunt field voltage drop	किस वोल्टेज ड्रॉप को 'X' के रूप में चिह्नित किया गया है?	पूर्ण लोड वोल्टेज पात	आर्मेचर वोल्टेज पात	आमेचर रिएक्शन ड्रॉप	शंट फील्ड वोल्टेज ड्रॉप	С	2
20 What is the name of the compound generator, if the shunt field is connected in parallel with armature?	Long shunt compound	Cumulative compound	Differential compound	Short shunt compound	कंपाउंड जनरेटर का नाम क्या है, यदि शंट फ़ील्ड आर्मेचर के साथ समानांतर में जुड़ा हुआ है?	लॉन्ग शंट कंपाउंड	संचयी यौगिक	विभेदक यौगिक	लघु शंट यौगिक	D	2
21 Why the armature core of a DC generator is laminated?	Reduce the copper loss	Reduce the friction loss	Reduce the hysteresis loss	Reduce the eddy current loss	क्यों एक डीसी जनरेटर के आमेचर कोर पटलित है?	ताम्र हानि को कम करें	घर्षण हानि को कम करें	हिस्टेरिसीस हानि को कम करें	भंवर धारा हानि को कम करें	D	2
22 Why armature resistance of a D.C generator is very low?	Reduce armature current	Reduce armature voltage drop	Run armature with less weight	Reduce the temperature of armature	D.C जनरेटर का आर्मेचर प्रतिरोध बहुत कम क्यों है?	आमेचर धारा कम करें	आर्मेचर वोल्टेज ड्रॉप को कम करें	कम वजन के साथ आर्मेचर चलाएं	आर्मेचर का तापमान कम करें	В	2
23 Why the D.C generator should run in clockwise direction only?	Protect brushes from damage	Protect the residual magnetism	Avoid short circuit in armature	Avoid over loading of generator	D.C जनरेटर को घड़ी की दिशा में ही क्यों चलना चाहिए?	ब्रश को नुकसान से बचाएं	अवशिष्ट चुंबकत्व की रक्षा करें	आमैचर में शॉर्ट सकिट से बचें	जनरेटर अतिभारित करने से बचें	В	2
24 Why compensating winding is provided in large DC generators?	Connect more loads	Reduce commutation effect	Neutralize armature reaction effect	Increase the efficiency of generator	बड़े डीसी जनरेटर में घुमावदार क्षतिपूर्ति क्यों प्रदान की जाती है?	अधिक लोड कनेक्ट करें	कम्यूटेशन प्रभाव को कम करें	आमेचर प्रतिक्रिया प्रभाव को बेअसर करें	जनरेटर की दक्षता बढ़ाएं	С	2

What is the reason for DC generator fails to build up voltage?	Loose brush contact	Armature resistance is more	Field resistance is above critical resistance	Prime mover is running at above rated speed	डीसी जनरेटर के वोल्टेज का निर्माण करने में विफल होने का क्या कारण है?	ढीले ब्रश संयोजन	आमेचर प्रतिरोध अधिक है	फ़ील्ड प्रतिरोध क्रांतिक प्रतिरोध से ऊपर है	प्राइम मूवर रेटेड गति से ऊपर चल रहा है	С	2
What is the name of generator, if its field is connected in parallel with armature?	Shunt generator	Series generator	Compound generator	Self excited generator	जनरेटर का नाम क्या है, यदि इसका क्षेत्र आर्मेचर के समानांतर जुड़ा हुआ है?	शंट जनरेटर	श्रेणी जनरेटर	यौगिक जनरेटर	स्वयं उत्तेजित जनरेटर	A	2
What is the purpose of pole shoe in DC generator?	Reduce the air gap	Increase the field strength	Minimize the magnetic losses	Spread out flux uniformly in the air gap	डीसी जनरेटर में पोल शू का उद्देश्य क्या है?	एयर गैप को कम करें	क्षेत्र की ताकत बढ़ाएं	चुंबकीय हानियों को कम करें	एयर गैप में समान रूप से फ्लक्स को फैलाएं	D	2
What is the function of split rings in DC generator?	Maintain constant voltage	Collects the current unidirectionally	Reduces the voltage drop at brushes	Increases the terminal voltage than rated	डीसी जनरेटर में स्प्लिट रिंग का क्या कार्य है?	निरंतर वोल्टेज बनाए रखें	धारा को एक दिशा में एकत्र करता है	ब्रश पर वोल्टेज ड्रॉप को कम करता है	रेटेड की तुलना में टर्मिनल वोल्टेज बढ़ाता है	В	2
Which material is used to make brush in generator?	Steel and graphite	Carbon and graphite	Cast iron and graphite	Aluminium and graphite	जनरेटर में ब्रश बनाने के लिए किस सामग्री का उपयोग किया जाता है?	स्टील और ग्रेफाइट	कार्बन और ग्रेफाइट	ढलवां लोहा और ग्रेफाइट	एल्यूमीनियम और ग्रेफाइट	В	2
Why DC generators are loosing their residual magnetism?	Heavy short circuit in load	Running without load continuously	Continuous running without break	Change of direction of rotation very often	क्यों डीसी जनरेटर अपने अवशिष्ट चुंबकत्व खो देते हैं?	भार में भारी शॉर्ट सर्किट	बिना लोड के लगातार चल रहा है	बिना रुके के लगातार चलना	रोटेशन की दिशा अक्सर बदलती है	D	2
How does the magnetic circuit complete through the yoke and poles in a generator?	Field coils	Armature core	Laminated pole core	Winding conductors in armature	एक जनरेटर में योक और ध्रुव के माध्यम से चुंबकीय सर्किट कैसे पूरा होता है?	क्षेत्र कुंडली	आमैचर कोर	पटलित पोल कोर	आमेचर में वाइंडिंग कंडक्टर	В	2
Why the terminal voltage decreases if load increases in DC shunt generator?	Because of armature reaction effect	Due to increased in armature resistance	Because of brush voltage drop decreases	Due to increased in shunt field inductance	डीसी शंट जनरेटर में लोड बढ़ने पर टर्मिनल वोल्टेज कम क्यों हो जाता है?	आर्मेचर प्रतिक्रिया प्रभाव के कारण	आमेचर प्रतिरोध में वृद्धि के कारण	ब्रश वोल्टेज की वजह से गिरावट कम हो जाती है	शंट फील्ड प्रेरकत्व में वृद्धि के कारण	A	2
Which type of DC generator is used for long distance distribution lines?	Shunt generator	Series generator	Differential compound generator	generator	लंबी दूरी की वितरण लाइनों के लिए किस प्रकार के डीसी जनरेटर का उपयोग किया जाता है?	शंट जनरेटर	श्रेणी जनरेटर	विभेदक यौगिक जनरेटर	संचयी यौगिक जनरेटर	D	2
Which method is used to improve the insulation resistance in DC generator?	Replacing the brushes frequently	Heating the machine by running periodically	Cleaning the commutator segments regularly	Blowing hot air in to the machine during maintenance	डीसी जनरेटर में इन्सुलेशन प्रतिरोध को बेहतर बनाने के लिए किस विधि का उपयोग किया जाता है?	ब्रश को बार-बार बदलना	समय-समय पर मशीन को गर्म करना	नियमित रूप से कम्यूटेटर सेगमेंट की सफाई करना	रखरखाव के दौरान मशीन में गर्म हवा देना	D	2
Which type of D.C Generator works in absence of residual magnetism?	Shunt generator	Series generator	Compound generator	Separately excited generator	अविशिष्ट चुंबकत्व के अभाव में किस प्रकार का D.C जेनरेटर काम करता है?	शंट जनरेटर	श्रेणी जनरेटर	यौगिक जनरेटर	अलग से उत्तीजेत जनरेटर	D	2
Which type of D.C generator is used for arc welding?	Shunt generator	Series generator	Differential compound generator	Cumulative compound generator	आर्क वेल्डिंग के लिए किस प्रकार के D.C जनरेटर का उपयोग किया जाता है?	शंट जनरेटर	श्रेणी जनरेटर	विभेदक यौगिक जनरेटर	संचयी यौगिक जनरेटर	С	2
What is the property of wave winding in D.C generator?	Low current low voltage	High current low voltage	Low current high voltage	High current high voltage	D.C जनरेटर में तरंग वाइंडिंग की विशेषता क्या है?	कम धारा कम वेल्टिज	उच्च धारा कम वेल्टिज	कम धारा उच्च वोल्टेज	उच्च धारा उच्च वोल्टेज	С	2
What is the purpose of resistance wire used in the commutator connection in D.C generator?	Maintain constant voltage	Nullifying statically induced emf	Increasing statically induced emf	Smooth reversal of current direction	D.C जनरेटर में कम्यूटेटर संयोजन में प्रयुक्त प्रतिरोध तार का उद्देश्य क्या है?	नियत वोल्टेज बनाए रखें	शून्य स्थैतिक रूप से प्रेरित ईएमएफ	स्थैतिक रूप से प्रेरित ईएमएफ बढ़ाना	धारा दिशा का आसानी से पलटना	D	2
1 2 3 4											
Why solid pole shoes are used in D.C generator?	To reduce the copper loss	To increase the residual magnetism	To decrease the residual magnetism	magnetic path	D.C जनरेटर में ठोस पोल शू का उपयोग क्यों किया जाता है?	तांबे के नुकसान को कम करने के लिए	अवशिष्ट चुंबकत्व को बढ़ाने के लिए	अवशिष्ट चुंबकत्व को कम करने के लिए	चुंबकीय पथ के रिलक्टेंस को कम करने के लिए	D	2
Which metal is used to make large capacity DC generator yoke?	Cast iron	Soft iron	Aluminium	Rolled Steel	बड़ी क्षमता के डीसी जनरेटर योक बनाने के लिए किस धातु का उपयोग किया जाता है?	ढलवां लोहा	नर्म लोहा	अल्युमीनियम	रोल्ड स्टील	D	2
What is the function of split rings in a D.C generator?	Supplies output continuously	Makes output in the uni direction	Makes output in the opposite direction	Collects the output from alternate conductors	डी सी जनरेटर में स्पिलट रिंग्स का क्या कार्य है?	लगातार आउटपुट की आपूर्ति	एक दिशा में आउटपुट बनाता है	विपरीत दिशा में आउटपुट करता है	प्रत्यावर्ती कंडक्टर से आउटपुट एकत्र करता है	В	2

Which type of voltage is induced dynamically in a D.C generator?	Pulsating voltage	Oscillating voltage	Alternating voltage	Direct current voltage	D.C जनरेटर में किस प्रकार का वोल्टेज गतिशील रूप से प्रेरित होता है?	पल्सेटिंग वोल्टेज	दोलनशील वोल्टेज	प्रत्यावर्ती वोल्टेज	प्रत्यक्ष धारा वोल्टेज	С	2
What is the purpose of slot marked as 'X'?	To fix the key way	To make air circulation	For lubrication purpose	For easy removal from shaft	'X' के रूप में चिह्नित स्लॉट का उद्देश्य क्या है?	कुंजी तरीका ठीक करने के लिए	वायु परिसंचरण बनाने के लिए	स्नेहन उद्देश्य के लिए	शाफ़्ट से आसानी से हटाने के लिए	A	2
14 What is the purpose of field coils in D.C generator?	To increase the flux in air gap	To decrease the magnetizing current	To magnetize the poles to produce coil flux	To increase the reluctance of magnetic path	D.C जनरेटर में फील्ड कॉइल का उद्देश्य क्या है?	एयर गैप में फ्लक्स को बढ़ाने के लिए	मैग्नेटाइजिंग करंट को कम करने के लिए	कुंडली फ्लक्स का निर्माण करने के लिए ध्रुवों को चुम्बकित करना	चुंबकीय पथ के रिलक्टेंस को बढ़ाने के लिए	С	2
Which metal is used to make pole core of large DC generator machines?	Soft iron	Cast iron	Cast steel	Stainless steel	बड़े डीसी जनरेटर मशीनों के पोल कोर बनाने के लिए किस धातु का उपयोग किया जाता है?	नर्म लोहा	ढलवां लोहा	ढलवां इस्पात	स्टेनलेस स्टील	С	2
Why the pole core stampings are laminated in DC generator?	Reduce the friction loss	Reduce the windage loss	Reduce the hysteresis loss	Reduce the eddy current loss	क्यों पोल कोर स्टांपिंग डीसी जनरेटर में पटलित करते हैं?	घर्षण हानि को कम करें	विंडेज लॉस को कम करें	हिस्टैरिसीस हानि को कम करें	भंवर धारा हानि को कम करें	D	2
Which type of DC generator is used for electroplating process?	Shunt generator	Series generator	Differential compound generator	Cumulative compound generator	इलेक्ट्रोप्लेटिंग प्रक्रिया के लिए किस प्रकार के डीसी जनरेटर का उपयोग किया जाता है?	शंट जनरेटर	श्रेणी जनरेटर	विभेदक यौगिक जनरेटर	संचयी यौगिक जनरेटर	Α	2
What is the purpose of compensating winding in DC generator?	Minimizes rough commutation	Maintain constant output voltage	Neutralizes the demagnetizing effect	Decreases the excitation current of field coils	डीसी जनरेटर में कम्पन्सीटेंग वाइंडिंग का उद्देश्य क्या है?	कठोर कम्यूटेशन कम करता है	नियत आउटपुट वोल्टेज बनाए रखें	विचुम्बकीकरण प्रभाव को बेअसर कर देता है	क्षेत्र कुंडली की उत्तेजन धारा को घटाता है	С	2
What is the effect if the shunt field resistance is above critical resistance value in a D.C generator?	Output voltage is pulsating	Output voltage is above normal	Generator fails to build up voltage	Generator builds up voltage normally	यदि शंट फ़ील्ड प्रतिरोध क्रांतिक प्रतिरोध मान से ऊपर है तो क्या प्रभाव पड़ता है?	आउटपुट वोल्टेज पर्ल्सीटैंग है	आउटपुट वोल्टेज सामान्य से ऊपर है	जनरेटर वोल्टेज बनाने में विफल रहता है	जेनरेटर सामान्य रूप से वोल्टेज बनाता है	С	3
What is the effect of armature reaction in DC generator?	Output voltage increases	Output voltage decreases	Output voltage is pulsating	Output voltage will become zero	डीसी जनरेटर में आर्मेचर प्रतिक्रिया का प्रभाव क्या है?	आउटपुट वोल्टेज बढ़ता है	आउटपुट वोल्टेज कम हो जाता है	आउटपुट वोल्टेज स्पंदित हो रहा है	आउटपुट वोल्टेज शून्य हो जाएगा	В	3
Calculate the emf genarated in a 4 pole DC generator with simplex wave wound armature has 1020 conductors and driven at a speed of 1500 rpm, the flux / pole is 0.007 webers?	178 V	243 V	357 V	428 V	सिम्पलेक्स वेव वाउंड आर्मेचर के साथ एक 4 पोल डीसी जनरेटर में 1020 कंडक्टर है और 1500 आरपीएम की गति से संचालित है, फ्लक्स / पोल 0.007 वेबर है; उत्पादित ईएमएफ की गणना करें?	178 V	243 V	357 V	428 V	С	3
How the effect of armature reaction can be neutralized in large DC generators?	Using compensating winding	Providing additional inter poles	Increasing brush contact resistance	Adding resistance wires with winding	बड़े डीसी जनरेटर में आर्मचर प्रतिक्रिया के प्रभाव को कैसे बेअसर किया जा सकता है?	कम्पनसेटिंग वाइंडिंग का उपयोग करना	अतिरिक्त इंटर पोल प्रदान करना	ब्रश संपर्क प्रतिरोध बढ़ना	वाइंडिंग के साथ प्रतिरोध तारों को जोड़ना	A	3
What is the effect in D.C generator, if it is kept ideal for long time?	Field coil resistance increases	Armature resistance increases	Increase the armature reaction	Looses its residual magnetism	D.C जनरेटर में क्या प्रभाव होता है, अगर इसे लंबे समय तक बंद रखा जाए?	फ़ील्ड काँइल प्रतिरोध बढ़ जाता है	आर्मेचर प्रतिरोध बढ़ता है	आमेचर प्रतिक्रिया बढ़ना	अपने अवशिष्ट चुंबकत्व को खो देता है	D	3
4 Calculate the induced emf of 4 pole dynamo having 1000 rpm lap wound and total number of conductors is 600, the flux / pole is 0.064 wb?	160V	320V	480V	640V	4 पोल डायनेमो के प्रेरित ईएमएफ की गणना करें, 1000 आरपीएम लैप वाउंड और कंडक्टरों की कुल संख्या 600 है, फ्लक्स / पोल 0.064 wb है?	160V	320V	480V	640V	D	3
What is the effect on induced emf if the main field flux get distorted in DC generator?	Induced emf increases	Induced emf decreases	No change in induced emf	Induced emf becomes zero	यदि मुख्य क्षेत्र का प्रवाह डीसी जनरेटर में विकृत हो जाए, तो प्रेरित ईएमएफ पर क्या प्रभाव पड़ता है?	प्रेरित EMF बढ़ता है	प्रेरित ईएमएफ घटता है	प्रेरित ईएमएफ में कोई बदलाव नहीं	प्रेरित ईएमएफ शून्य हो जाता है	В	3
66 What is the cause for heavy sparking in brushes of DC generator?	Short circuit in field winding	Short circuit in armature winding	MNA and GNA position changed	Too much spring tension at brush	डीसी जनरेटर के ब्रश में भारी स्पार्किंग का कारण क्या है?	फील्ड वाइंडिंग में शॉर्ट सर्किट	आमेचर वाइंडिंग में शॉर्ट सर्किट	एमएनए और जीएनए स्थिति बदल गई	ब्रश के रूप में बहुत अधिक स्प्रिंग तनाव	С	3

Question	OPT A	ОРТ В	OPT C	the Trade - Electricia	Question		ОРТ В	OPT C	OPT D	Ans	Levels
Question	OFFA	OFF		0112	Question	OLIA		0110	OI I B	Alls	Levei
1 Which instrument is used to measure armature winding resistance?	Megger	Multimeter	Series type Ohm meter	Kelvin bridge	आमेचर वाइंडिंग प्रतिरोध को मापने के लिए किस उपकरण का उपयोग किया जाता है?	मेगर	मल्टीमीटर	श्रेणी प्रकार ओह्म मीटर	केल्विन ब्रिज	D	1
2 Which instrument is used to test armature winding for short and open circuit?	Tong Tester	Internal Growler	External Growler	Digital multimeter	"शॉर्ट और ओपन सिकेट के लिए आमेचर वाइंडिंग का परीक्षण करने के लिए किस उपकरण का उपयोग किया जाता है?	टोंग परीक्षक	आंतरिक ग्राउलर	बाहरी ग्राउलर	डिज़िटल मल्टीमीटर	С	1
3 What is the name of the speed control method of DC motor?	Field diverter method	Field tapping method	Voltage control method	Armature diverter method	डीसी मोटर की गति नियंत्रण विधि का क्या नाम है?	फील्ड डायवर्टर विधि	फील्ड टेपिंग विधि	वोल्टेज नियंत्रण विधि	आमेचर डायवर्टर विधि	D	1
4 Which winding wire is used for DC field coil?	Super enameled copper wire	Single silk covered copper wire	Double silk covered copper wire	PVC covered copper winding wire	डीसी फील्ड कॉइल के लिए किस वाइंडिंग तार का उपयोग किया जाता है?	सुपर इनेमल्ड तांबे के तार	सिंगल सिल्क कवर्ड कॉपर वायर	डबल सिल्क कवर्ड कॉपर वायर	PVC कवर्ड कॉपर वाइंडिंग वायर	A	1
5 Which formula is used to calculate the speed of DC motor?	$N = \frac{E_b}{\phi}$	$N = \frac{\varphi}{E_b}$	$N = \frac{E_b \cdot \varphi}{120}$	$N = \frac{E_b \cdot \varphi}{60}$	"डीसी मोटर की गति की गणना करने के लिए किस सूत्र का उपयोग किया जाता है?	$N = \frac{E_b}{\phi}$	$N = \frac{\varphi}{E_b}$	$N = \frac{E_b \cdot \varphi}{120}$	$N = \frac{E_b \cdot \varphi}{60}$	A	1
6 How many parallel paths in duplex lap winding in the armature of 4 pole D.C Motor?	2	4	6	8	4 पील D.C मीटर की आमेचर में डुप्लेक्स लैप वाइंडिंग में कितने समानांतर रास्ते हैं?	2	4	6	8	A	1
7 Which rule determines the direction of rotation of armature in D.C motor?	Right hand grip rule	Right hand palm rule	Fleming's left hand rule	Fleming's right hand rule	D.C मोटर में आर्मेचर के घूमने की दिशा कौन सा नियम निर्धारित करता है?	दाहिना हाथ पकड़ नियम	दाहिने हाथ की हथेली का नियम	फ्लेमिंग के बाएं हाथ का नियम	फ्लेमिंग के दाहिने हाथ का नियम	С	1
8 What is the name of D.C motor? E1 DC SUPPLY DC SUPPLY BB B	D.C shunt motor	D.C series motor	D.C differential compound motor	D.C cumulative compound motor	D.C मोटर का क्या नाम है?	D.C शंट मोटर	D.C श्रेणी मोटर	D.C अवकलन योगिक मोटर	D.C संचयी योगिक मोटर	R A	1
9 Which rule determines the direction of current in D.C motor?	Right hand grip rule	Right hand palm rule	Fleming's left hand rule	Fleming's right hand rule	डी सी मोटर में करंट की दिशा किस नियम से निर्धारित होती है?	दाहिना हाथ पकड़ नियम	दाहिने हाथ की हथेली का नियम	फ्लेमिंग के बाएं हाथ का नियम	फ्लेमिंग के दाहिने हाथ का नियम	D	1
10 What is the formula to calculate the current taken by D.C shunt motor armature?	$I_a = \frac{V}{R_a}$	$I_a = \frac{E_b}{R_a}$	$I_a = \frac{V - E_b}{R_a}$	$I_a = \frac{V + E_b}{R_a}$	D.C शंट मोटर आमेचर द्वारा ली गई धारा की गणना करने का सूत्र क्या है?	$I_a = \frac{V}{R_a}$	$I_a = \frac{E_b}{R_a}$	$I_a = \frac{V - E_b}{R_a}$	$I_a = \frac{V + E_b}{R_a}$	С	1
11 Which rule is applied to identify the direction of flux in DC motor?	Cork's screw rule	Right hand grip rule	Fleming's left hand rule	Fleming's right hand rule	डीसी मोटर में फ्लक्स की दिशा की पहचान करने के लिए कौन सा नियम लागू किया जाता है?	कॉर्क स्क्रू नियम	दाहिना हाथ पकड़ नियम	प्लेमिंग के बाएं हाथ का नियम	फ्लेमिंग के दाहिने हाथ का नियम	С	1
Name the type of DC motor.	Shunt motor	Series motor	Long shunt compound motor	Short shunt compound motor	र्डीसी मोटर के प्रकार को नाम दें।	शंट मोटर	श्रेणी मोटर	लंबी शंट कंपाउंड मोटर	शॉर्ट शंट कंपाउंड मोटर	D	1
13 What is the formula to calculate back EMF in a DC motor?	$E_b = \frac{ZNP}{\phi \; 60 \; A}$	$E_b = \frac{NP}{Z \phi 60 A}$	$E_b = \frac{\phi Z N P}{60 A}$	$E_b = \frac{60 \text{ A } \phi}{Z \text{ N P}}$	DC मोटर में EMF की गणना करने का सूत्र क्या है?	$E_b = \frac{ZNP}{\phi 60 \text{ A}}$	$E_b = \frac{NP}{Z \phi 60 A}$	$E_b = \frac{\varphi Z N P}{60 A}$	$E_b = \frac{60 \; A \; \phi}{Z \; N \; P}$	С	1

What is the name of the equipment?	Megger	Earth resistance tester	Internal growler	External growler	उपकरण का नाम क्या है?	मेगर	भू प्रतिरोध परीक्षक	आंतरिक ग्राउलर	बाहरी ग्राउलर	D	1
TO LINE 200 VOLTS COIL MISULAYED PROM CORE											
5 What is the name of winding, if coil pitch is less than pole pitch?	Full pitch winding	Half pitch winding	Long chorded winding	Short chorded winding	यदि काइल पिच, पोल पिच से कम है, तो वाइंडिंग का नाम क्या है?	पूर्ण पिच कुंडलन	अर्ध पिच कुंडलन	लंबी कोर्डेड वाइंडिंग	शॉर्ट कॉर्डेड वाइंडिंग	D	1
16 What is the purpose of series resistor connected with holding coil in a D.C four point starter?	Limit the current in holding coil	Increase the current in holding coil	Increase the voltage in holding coil	Decrease the voltage in holding coil	डी सी चार पॉइंट स्टार्टर में होल्डिंग कॉइल से जुड़े श्रेणी प्रतिरोधक का उद्देश्य क्या है?	होल्डिंग कुंडली में करंट को सीमित करें	होल्डिंग कॉइल में करंट बढ़ाएं	कॉइल को पकड़ने में वोल्टेज बढ़ाएं	होल्डिंग कॉइल में वोल्टेज कम करें	A	2
7 Which speed control method of D.C series motor is used for electric train?	Field diverter method	Field tapping method	Armature diverter method	Supply voltage control method	D.C सीरीज मोटर की किस गति नियंत्रण विधि का उपयोग इलेक्ट्रिक ट्रेन के लिए किया जाता है?	फील्ड डायवर्टर विधि	फील्ड टेपिंग विधि	आमेचर डायवटेर विधि	आपूर्ति वोल्टेज नियंत्रण विधि	A	2
8 Why shunt field coil is connected in series with holding coil in D.C three point starter?	Increase the holding coil current	Decrease the holding coil current	Protect the shunt field from over current	Protect the motor in case of open in shunt field	शंट फील्ड काँड्ल को D.C थ्री पाँइंट स्टार्टर में होल्डिंग काँड्ल के साथ श्रृंखला में क्यों जोड़ा जाता है?	होल्डिंग काँइल करंट बढ़ाएं	होल्डिंग काँड्ल करंट घटाएं	शंट फील्ड को करंट से बचाएं	शंट फ़ील्ड खुले होने की स्थिति में मोटर को सुरक्षित रखें	D	2
9 Why the direction of rotation is changed only by changing the armature current direction in a D.C compound motor?	Maintain rated speed	Maintain motor characteristics	Avoid armature reaction effect	Prevent motor from over loading	D.C मिश्रित मोटर में आमेंचर धारा दिशा को बदलकर केवल घूर्णन की दिशा क्यों बदल दी जाती है?	रेटेड गति बनाए रखें	मोटर विशेषताओं को बनाए रखें	आर्मेचर प्रतिक्रिया प्रभाव से बचें	मोटर को ओवर लोडिंग से रोकें	В	2
0 Which speed control methods offers below normal speed in DC shunt motor?	Field control method	Voltage control method	Armature control method	Ward Leonard system of speed control	डीसी शंट मोटर में सामान्य गति से नीचे कौन सी गति नियंत्रण विधियां प्रदान करती हैं?	क्षेत्र नियंत्रण विधि	वोल्टेज नियंत्रण विधि	आमेचर नियंत्रण विधि	गति नियंत्रण की वार्ड लियोनार्ड प्रणाली	С	2
1 Why starters are required to start D.C motors in industries?	Regulate the field voltage	Reduce the armature current	Control the armature reaction	Smooth operation of motors	उद्योगों में D.C मोटर्स को शुरू करने के लिए स्टार्टर क्यों आवश्यक है?	क्षेत्र वोल्टेज को विनियमित करें	आमेचर करंट को कम करें	आर्मेचर प्रतिक्रिया को नियंत्रित करें	मोटरों का सुचारू संचालन	В	2
2 Which insulating material belongs to class 'B' insulation?	Cotton	Bamboo	Fiber glass	Leatheroid paper	कौन सी कुचालक सामग्री श्रेणी बी के कुचालक की है?	कपास	बांस	फाइबर ग्लास	चमड़े का कागज	С	2
What is the temperature value of class 'F' insulation?	90°C	105°C	120°C	155°C	श्रेणी 'एफ' इन्सुलेशन का तापमान मान क्या है?	90 डिग्री सेल्सियस	105 डिग्री सेल्सियस	120 डिग्री सेल्सियस	155 डिग्री सेल्सियस	D	2
Which type of D.C motor is used for constant speed drives?	DC series motor	DC shunt motor	Differential long shunt compound motor	Differential short shunt compound motor	निरंतर गति ड्राइव के लिए किस प्रकार की D.C मोटर का उपयोग किया जाता है?	डीसी श्रेणी मोटर	डीसी शंट मोटर	डिफरेंशियल लॉना शंट कंपाउंड मोटर	डिफरेंशियल शॉर्ट शंट कंपाउंड मोटर	В	2
Which type of DC motor is used in elevators?	DC series motor	DC shunt motor	DC differential compound motor	DC cumulative compound motor	लिफ्ट में किस प्रकार की डीसी मोटर का उपयोग किया जाता है?	डीसी श्रेणी मोटर	डीसी शंट मोटर	डीसी डिफरेंशियल यौगिक मोटर	डीसी संचयी यौगिक मोटर	D	2
below the rated speed in DC series motor?	Field diverter method	Tapped field method	Voltage control method	Armature diverter method	गति नियंत्रण का कौन सा तरीका डीसी श्रेणी मोटर में रेटेड गति के नीचे गति देता है?	फील्ड डायवर्टर विधि	टेप्ड क्षेत्र विधि	वोल्टेज नियंत्रण विधि	आमेचर डायवर्टर विधि		2
What is the effect, if a four point starter resistance is cutoff during running?	Motor stopped	Runs at slow speed	Runs at very high speed	Runs at reverse direction	क्या प्रभाव है, अगर चलने के दौरान चार बिंदु स्टार्टर प्रतिरोध कटऑफ है?	मोटर बंद हो जाएगी	धीमी गति से चलता है	बहुत तेज गति से चलता है	उल्टी दिशा में चलता है	В	2

28 Why carbon composition brush requires in the armature circuit to operate the D.C motor?	Increases the starting torque	Protects from armature reaction	Protects armature from over loading	Reduces the spark in the commutator segment	D.C मोटर को संचालित करने के लिए आर्मेचर सर्किट में कार्बन कंपोजिशन ब्रश की आवश्यकता क्यों होती है?	प्रारंभिक बलाघूर्ण को बढ़ाता है	आमेंचर प्रतिक्रिया से बचाता है	अति भारण से आर्मेचर की रक्षा करता है	कम्यूटेटर खंड में स्पार्क कम कर देता है	D	2
29 Why series motor produce high torque and speed initially without load?	Absence of back emf	Load current flows through field winding	Armature current and field current are same	Series field winding wound with thick wire	सीरीज़ मोटर बिना भार के आरंभिक उच्च बलाघूर्ण और गति क्यों पैदा करती है?	बैंक ईएमएफ की अनुपस्थिति	फ़ील्ड वाइंडिंग के माध्यम से लोड करंट प्रवाह होता है	आमेचर करंट और फील्ड करंट समान होते हैं	मोटी तार के साथ श्रेणी क्षेत्र वाइंडिंग तार	A	2
30 Why the series field is short circuted at the time of starting in differential compound motor?	To reduce the starting current	To increase the speed of motor	To decrease the speed of motor	To maintain proper direction of rotation	डिफरेंशियल कंपाउंड मोटर में शुरू करने के समय श्रेणी क्षेत्र को लघुपथित क्यों किया जाता है?	प्रारंभिक धारा को कम करने के लिए	मोटर की गति बढ़ाने के लिए	मोटर की गति को कम करने के लिए	रोटेशन की उचित दिशा बनाए रखने के लिए	D	2
31 Which is the most effective method of balancing armature?	Static balancing	Dynamic balancing	Attached with counter balancing	Plugged with lead weight balancing	आमेंचर को संतुलित करने का सबसे प्रभावी तरीका कौन सा है?	स्थैतिक संतुलन	गतिशील संतुलन	काउंटर संतुलन के साथ संलग्न	सीसा भार संतुलन के साथ प्लग किया गया	В	2
32 Which material is used for starting resistance of DC starters?	Eureka	Nichrome	Manganin	Constantine	डीसी स्टार्टर्स के प्रतिरोध को शुरू करने के लिए किस सामग्री का उपयोग किया जाता है?	यूरेका	नाइक्रोम	मैनाानिन	कांस्टेंटाइन	A	2
33 Which DC compound motor is operated at constant speed under varying load?	Differential long shun	t Cumulative long shunt	Differential short shunt	Cumulative short shunt	किस डीसी कंपाउंड मोटर को अलग-अलग लोड पर नियत गति से संचालित किया जा सकता है?	डिफरेंशियल लॉना शंट	संचयी लंबे शंट	विभेदक लघु शंट	संचयी लघु शंट	В	2
34 How No volt coil is connected in a three point starter with DC shunt motor?	Directly connected to supply	Connected in series with armature	Connected in parallel with armature	Connected in series with shunt field	डीसी शंट मोटर के साथ तीन पॉइंट स्टार्टर में नो वोल्ट कॉइल कैसे जुड़ा होता है?	सीधे आपूर्ति से जुड़ा हुआ	आर्मेचर के साथ श्रृंखला में जुड़ा हुआ है	आमेंचर के साथ समानांतर में जुड़ा हुआ है	शंट फ़ील्ड के साथ श्रेणी में जुड़ा हुआ है	D	2
Which type of armature winding is illustrated?	Duplex lap winding	Triplex lap winding	Simplex lap winding	Quadruplex lap winding	किस प्रकार की आमैचर वाइंडिंग का चित्रण किया गया है?	डुप्लेक्स लैप वाइंडिंग	ट्रिपलेक्स लैप वाइंडिंग	सिंप्लेक्स लैप वाइंडिंग	काडु प्लेक्स लैप वाईडिंग	A	2
36 Which growler test for armature is illustrated?	Open coil test	Grounded coil test	Shorted coil test	Shorted commutator test	आर्मेचर के लिए कौन सा ग्राउलर परीक्षण सचित्र है?	खुली कुंडली परीक्षण	जमीन का तार परीक्षण	लघुपथित कुंडल परीक्षण	लघुपथित कम्यूटेटर परीक्षण	A	2
37 Which speed control method is applied to obtain both below normal and above normal speed in DC motor?	Field control method	Armature control method	Tapped field speed control	Ward Leonard speed control	डीसी मोटर में सामान्य से ऊपर और नीचे दोनों गतियों को प्राप्त करने के लिए किस गति नियंत्रण विधि को लागू किया जाता है?	क्षेत्र नियंत्रण विधि	आमेंचर नियंत्रण विधि	टैप फ़ील्ड गति नियंत्रण	वार्ड लियोनार्ड गति नियंत्रण	D	2
38 Why commutators are sparking heavily?	Incorrect brush position	Incorrect field connection	Incorrect direction of rotation	Incorrect armature connection	कम्यूटेटर क्यों तेज चमक उत्पन्न कर रहा है?	ब्रश की गलत स्थिति	गलत फील्ड कनेक्शन	घूर्णन की गलत दिशा	गलत आमैचर कनेक्शन	A	2
39 What is the action of the induced emf in a running D.C motor?	Assists the applied voltage	Opposes the applied voltage	Increases the armature current	Decreases the armature current	चल रही D.C मोटर में प्रेरित ईएमएफ की क्रिया क्या है?	लागू वोल्टेज की सहायता करता है	लागू वोल्टेज का विरोध करता है	आमैचर करंट को बढ़ाता है	आर्मेचर करंट को घटाता है	В	2

40 Which motor has this characteristics curve?	Series motor	Shunt motor	Cumulative compound motor	Differential compound motor	किस मोटर में यह विशेषता है?	श्रेणी मोटर	शंट मोटर	संचयी यौगिक मोटर	विभेदक यौगिक मोटर	С	2
41 What is the purpose of resistor connected with holding coil in 4 point starter?	Limit current in NVC	Protect the coil from short circuit	Protect the motor from overload	Protect the armature from short circuit	4 बिंदु स्टार्टर में होल्डिंग कॉइल से जुड़े प्रतिरोधक का उद्देश्य क्या है?	एनवीसी में धारा सीमा	शॉर्ट सर्किट से कॉइल को सुरक्षित रखें	मोटर को ओवरलोड से बचाएं	शॉर्ट सर्किट से आमेचर को सुरक्षित रखें	A	2
42 Why the D.C series motor field winding is wound with thick wire?	To regulate field voltage	To carry the load current	To keep maximum inductance	To reduce the armature reaction	D.C श्रृंखला मोटर की फील्ड वाइंडिंग मोटी तार के साथ वाउंड क्यों है?	फील्ड वोल्टेज को विनियमित करने के लिए	लोड करंट को ले जाने के लिए	अधिकतम प्रेरण रखने के लिए	आमेचर प्रतिक्रिया को कम करने के लिए	В	2
Which type of speed control of D.C series motor? Do Supply Do Supply	Field parallel method	Field diverter method	Field tapping method	Armature diverter method	D.C श्रृंखला मोटर का गति नियंत्रण किस प्रकार का है?	क्षेत्र समानांतर विधि	फील्ड डायवर्टर विधि	फील्ड टेपिंग विधि	आमेचर डायवटेर विधि	A	2
44 Which type of D.C motor is suitable for shearing machines?	Shunt motor	Series motor	Cumulative compound motor	Differential compound motor	कतरनी मशीनों के लिए कौन सी प्रकार की D.C मोटर उपयुक्त है?	शंट मोटर	श्रेणी मोटर	संचयी यौगिक मोटर	विभेदक यौगिक मोटर	С	2
45 Where D.C compound motors are preferred?	Constant load requirements	Constant speed requirements	High starting torque requirements		कहाँ D.C मिश्रित मोटरों को प्राथमिकता दी जाती है?	लगातार लोड आवश्यकताएं	नियत गति की आवश्यकताएं	उच्च आरंभिक बलाघूर्ण आवश्यकताएं	अलग-अलग लोड आवश्यकताओं के अनुसार नियत गति	D	2
46 What is the necessity of starter for D.C motor?	Limit the field current	Limit the field voltage	Control the motor speed	Limit the armature current	D.C मोटर के लिए स्टार्टर की क्या आवश्यकता है?	फ़ील्ड धारा को सीमित करें	फ़ील्ड वोल्टेज को सीमित करें	मोटर की गति को नियंत्रित करें	आमेचर करंट को सीमित करें	D	2
47 Which type of instrument is used to test the armature winding?	Megger	Growler	Multimeter	Ohmmeter	आर्मेचर वाइंडिंग का परीक्षण करने के लिए किस प्रकार के उपकरण का प्रयोग किया जाता है2	मेगर	ग्राउलर	मल्टीमीटर	ओह्ममीटर	В	2
48 Why the holding coil of a 3 point starter is connected in series with shunt field?	To limit the load current	To run motor at low voltage	To hold the handle plunger firmly	To protect the motor from high speed	3 पॉइंट स्टार्टर के होल्डिंग कॉइल को शंट फ़ील्ड के साथ श्रृंखला में क्यों जोड़ा जाता है?	लोड करंट को सीमित करने के लिए	कम वोल्टेज पर मोटर चलाने के लिए	प्लंजर को ठीक से पकड़ने के लिए	उच्च गति से मोटर की रक्षा के लिए	D	2
What is the best method to change the DOR of a compound motor without change of its characteristics?	Change armature current direction	Change shunt field current direction	Change series field current direction	Change the current in armature and shunt field together	किसी योगिक मोटर की विशेषताओं के बिना बदले, DOR बदलने के लिए सबसे अच्छी विधि क्या है?	आमेचर धारा दिशा बदलें	शंट फ़ील्ड धारा दिशा बदलें	श्रेणी फ़ील्ड धारा दिशा बदलें	आमेचर और शंट फील्ड में करंट को एक साथ बदलें	A	2
50 What is the purpose of NVC connected in series with the field in 3 point starter?	To improve the torque	Reduce the field current	To decrease the back emf	To prevent increase in speed	3 बिंदु स्टार्टर में क्षेत्र के साथ श्रृंखला में जुड़े एनवीसी का उद्देश्य क्या है?	बलाघूणे को सुधारने के लिए	फ़ील्ड करंट कम करें	बैक EMF को कम करने के लिए	गति में वृद्धि को रोकने के लिए	D	2
51 Which type of DC motor is used for sudden application of heavy loads?	Shunt motor	Series motor	Differential compound motor	Cumulative compound motor	भारी भार के अचानक भारित करने के लिए किस प्रकार की डीसी मोटर का उपयोग किया जाता है?	शंट मोटर	श्रेणी मोटर	विभेदक यौगिक मोटर्स	संचयी यौगिक मोटर्स	D	2
52 Which speed control method is used in food mixture motors?	Voltage control method	Field diverter control method	Armature diverter method	Series field tapping method	खाद्य मिश्रण मोटर्स में किस गति नियंत्रण विधि का उपयोग किया जाता है?	वोल्टेज नियंत्रण विधि	फ़ील्ड डायवर्टर नियंत्रण विधि	आमैचर डायवर्टर विधि	श्रृंखला क्षेत्र टेपिंग विधि	D	2
53 Which speed control system provides a smooth variation of speed from zero to above normal?	Field control	Armature control	Field diverter control	Ward-Leonard system control	को उपयोग किया जाता हूं? कोन सी गति नियंत्रण प्रणाली शून्य से सामान्य से अधिक तक गति को एक आसान बदलाव प्रदान करता है?	क्षेत्र नियंत्रण	ापाय आमेचर नियंत्रण	फ़ील्ड डायवर्टर नियंत्रण	वार्ड-लियोनार्ड सिस्टम नियंत्रण	D	2
54 What is the purpose of tapes in winding?	Insulate slots	Bind the coils	Wrap the conductor	Insulate exposed conductors	वाइंडिंग में टेप का उद्देश्य क्या है?	स्लॉट्स को इंसुलेट करें	कॉइल को बांधें	कंडक्टर लपेटें	खुले कंडक्टरों को इन्सुलेट करें	С	2
Which type of DC armature winding the front pitch (Y _F) is greater than back pitch (Y _B)?	Lap winding	Wave winding	Progressive winding	Retrogressive winding	किस प्रकार की डीसी आर्मेचर फ्रंट पिच (वाईएफ) पीछे की पिच (वाईबी) से अधिक है?	लैप वाईडिंग	वेव वाइंडिंग	प्रोग्रेसिव वाइंडिंग	रिट्रोग्रेसिव वाइंडिंग	D	2

56 What reduces the cross sectional area	Dynama shoot	Low alloy sheet	High allow shoot	Normal steel sheet	T	डायनमो शीट	िका। गिथ धान की चाटा	उच्च मिश्र धातु की चादर	सामान्य स्टील शीट	<u> </u>	Т э
of core material for VA rating?	Dynamo sheet	Low alloy sneet	High alloy sheet		वीए रेटिंग के लिए कोर सामग्री के क्रॉस सेक्शनल क्षेत्र को क्या कम करता है?	ठापगमा साट	परम मित्र यातु परा पादर	उप्प मित्र वातु का वादर	सामान्य स्टाल शाट	С	2
57 How to obtain opposite polarity in adjacent poles of a 4 pole DC motor?	Varying the number of turns in coil	Making series connection of coils	Making parallel connection of coils	Making current flow in different direction	4 ध्रुव डीसी मोटर में आसन्न ध्रुवों में विपरीत ध्रुवता कैसे प्राप्त करें?	कुंडल में घुमावों की संख्या को बदलना	कॉइल्स की श्रेणी संयोजन बनाना	कॉइल के समानांतर संयोजन बनाना	धारा प्रवाह को अलग दिशा में बनाना	D	2
58 What is the operation in the rewinding process?	Cleaning of slots	Removing of winding	Removing of wedges	Cutting of winding wire	रिवाइंडिंग प्रक्रिया में यह क्रिया क्या है?	खांचों की सफाई	वाइंडिंग निकालना	वेजेज को हटाना	वाइंडिंग तार काटना	С	2
59 Which insulating material used in winding is a highly non -hygroscopic and possess good electrical strength?	Empire cloth	Triplex paper	Millinex paper	Leatheroid paper	वाइंडिंग में उपयोग की जाने वाली कौन सी कुचालक सामग्री एक अत्यधिक गैर- हीग्रोस्कोपिक(नमी न सोखने वाली) है और अच्छी विद्युत शक्ति रखती है?	एम्पायर कपडा	ट्रिपलेक्स पेपर	मिलिनेक्स पेपर	चमड़े का कागज	С	2
60 Which type of armature winding is illustrated?	Triplex wave winding	Duplex wave winding	Progressive lap winding	Retrogressive lap winding	किस प्रकार की आमैचर वाइंडिंग का चित्रण किया गया है?	ट्रिपलेक्स वेव वाइंडिंग	ड्यूपलेक्स वेव वाइंडिंग	प्रगतिशील लैप वाइंडिंग	रिट्रोग्नेसिव लैप वाइंडिंग	С	2
61 Calculate the average pitch (Y _A) for retrogressive wave winding, if No. of armature conductor = 14 No. of slots = 7 No. of poles = 2	4	6	8	14	रिट्रॉग्रेसिव वेव वाइंडिंग के लिए औसत पिच (YA) की गणना करें, यदि, आर्मेचर कंडक्टर की संख्या=14, स्लॉट की संख्या=7, ध्रुवों की संख्या=2	4	6	8	14	В	2
Which type of test is illustrated for the armature after rewound?	Open coil test	Shorted coil test	Voltage drop test	Grounded coil test	प्रतिक्षेप के बाद आमेचर के लिए किस प्रकार का परीक्षण चित्रित किया गया है?	खुली कुंडली परीक्षण	लघुपथित कुंडल परीक्षण	वोल्टेज ड्रॉप परीक्षण	ग्राउंडेड कॉइल परीक्षण	В	2
63 Why the newly rewound armature must be preheated before varnishing?	Drive out the moisture from it	Help for quick drying of varnish	Make easy to penetrate varnish inside	Maintain uniform spreading of varnishing	वानिशिंग से पहले नए रीवाउंड आमेचर को गरम क्यों किया जाना चाहिए?	इससे नमी को बाहर निकालें	वानिश के त्वरित सुखाने के लिए मदद	अंदर वानिश घुसना आसान बनाएं	वार्निशिंग के समान प्रसार को बनाए रखें	A	2
64 How the direction of rotation of a DC compound motor is changed?	By changing the direction of armature current	By interchanging the supply terminals	By changing the direction of both field and armature current	By changing the direction of series field current	डीसी कंपाउंड मोटर के घूणेन की दिशा कैसे बदली जाती है?	आमेचर धारा की दिशा बदलकर	आपूर्ति टोमैनलों को आपस में करके	क्षेत्र और आर्मचर दोनों की दिशा बदलकर	श्रृंखला क्षेत्र की धारा की दिशा बदलकर	A	3
65 What is the effect in a D.C shunt motor, if its supply terminals are interchanged?	Runs in slow speed	Runs in high speed	Runs in the same direction	Runs in the reverse direction	डी सी शंट मोटर में क्या प्रभाव पड़ता है, यदि इसकी आपूर्ति टर्मिनलों को आपस में बदल दिया जाता है?	धीमी गति से चलती है	तेज रफ्तार में चलती है	एक ही दिशा में चलता है		С	3
66 What is the speed, if field winding of a DC shunt motor is in open circuit?	Stop running	Motor runs normally	Runs at slow speed	Runs in very high speed	यदि डीसी शेंट मोटर की फील्ड वाइंडिंग ओपन सर्किट में हो, तो गति क्या है?	चलना बंद हो जायेगा	मोटर सामान्य रूप से चलती है	धीमी गति से चलती है	बहुत तेज गति में चलती है	D	3

67 What is the reason for reduction in speed of a D.C shunt motor from no load to full load?	Shunt field current increases	Shunt field current decreases	Armature voltage drop increases	Armature voltage drop decreases		शंट फील्ड करंट बढ़ता है	शिंट फील्ड करेंट घटता है	आमेंचर वोल्टेज ड्रॉप बढ़ जाती है	आमेंचर वोल्टेज ड्रॉप कम हो जाता है	С	3
68 Which winding fault is determined by the test?	Open coil fault	Short coil fault	Grounded coil fault	Grounded core faul	lt कौन सा वाइंडिंग दोष इस परीक्षण द्वारा ज्ञात किया जाता है?	खुली कुंडली दोष	लघुपथित कुंडल दोष	ग्राउंडेड कॉइल फॉल्ट	ग्राउंड कोर फॉल्ट	A	3
L BUPPLY N 240 VICLIS AC											

		Na	ame of the Trade - El	ectrician 3 rd Sem - N	SQF - Module 3 - AC. Three Phase Motor						
# Question	OPT A	ОРТ В	OPT C	OPT D	Question	OPT A	ОРТ В	ОРТ С	OPT D	Ans	Levels
1 What is the formula to calculate the slip speed (N _{slip}) of 3 phase squirrel cage induction motor?	$N_{\text{slip}} = N_{\text{s}} - N_{\text{r}}$	$N_{\text{slip}} = N_{\text{r}} - N_{\text{s}}$	$N_{slip} = \frac{N_S - N_\Gamma}{N_\Gamma}$	$N_{slip} = \frac{N_S - N_f}{N_S}$	3 कला स्क्रिरल केज प्रेरण मोटर की स्लिप गति (Nslip) की गणना करने का सूत्र क्या है?	$N_{slip} = N_s - N_r$	$N_{\text{slip}} = N_{\text{r}} - N_{\text{s}}$	$N_{\text{slip}} = \frac{N_{\text{S}} - N_{\text{f}}}{N_{\text{f}}}$	$N_{\text{slip}} = \frac{N_{\text{S}} - N_{\text{f}}}{N_{\text{S}}}$	A	1
2 What is the type of control circuit?	Inching control	ON remote control	OFF remote control	Forward & reverse control	नियंत्रण सर्किट का प्रकार क्या है?	इन्चिंग नियंत्रण	रिमोट कंट्रोल पर	रिमोट कंट्रोल बंद	आगे और रिवर्स नियंत्रण	A	1
3 Which formula is used to calculate the total electrical degree in stator of an A.C motor?	Total electrical degree = 180° / No. of slots	Total electrical degree = 180° x No. of slots	Total electrical degree = 180° / No. of poles	Total electrical degree = 180° x No. of poles	A.C मोटर के स्टेटर में कुल विद्युत डिग्री की गणना करने के लिए किस सूत्र का उपयोग किया जाता है?	कुल विद्युत डिग्री = 180 ° / स्लॉट्स की संख्या	कुल विद्युत डिग्री = 180 ° x स्लॉट्स की संख्या	कुल विद्युत डिग्री = 180 ° / ध्रुवों की संख्या	कुल विद्युत डिग्री = 180 ° x ध्रुवों की संख्या	D	1
4 What is the name of the A.C motor starter?	DOL starter	Auto transformer starter	Semi automatic star delta starter	Fully automatic star delta starter	A.C मोटर स्टार्टर का नाम क्या है?	DOL स्टार्टर	ऑटो ट्रांसफार्मर स्टार्टर	अर्ध स्वचालित स्टार डेल्टा स्टार्टर	पूर्ण स्वचालित स्टार डेल्टा स्टार्टर	В	1
5 What is the formula to find synchronous speed of a A.C 3 phase induction motor?	Synchronous speed = 120F	Synchronous speed $= \frac{120P}{F}$	Synchronous speed = $\frac{120}{PF}$	Synchronous speed = PF 120	ए सी 3 कला प्रेरण मोटर की तुल्यकालिक गति ज्ञात करने का सूत्र क्या है?	तुल्यकालिक गति = <u>120F</u> P	तुल्यकालिक गति = 120P F	तुल्यकालिक गति = 120 P F	तुल्यकालिक गति =	A	1
6 What is the fuse rate to run a 10 HP three phase induction motor at full load?	10 A	15 A	25 A	30 A	पूर्ण लोड पर 10 एचपी तीन कला प्रेरण मोटर चलाने के लिए फ्यूज दर क्या है?	10 A	15 A	25 A	30 A	С	1
7 What is the name of the contact marked as 'X'? Value	Star contact	Delta contact	Auxiliary contact	Over load relay contact	संपर्क का नाम क्या है जिसे 'X' के रूप में दर्शाया गया है?	स्टार संपर्क	डेल्टा संपर्क	सहायक संपर्क	ओवर लोड रिले संपर्व		1
8 What is the type of A.C motor stator winding?	Single layer basket winding	Double layer basket winding	Involute coil winding	Diamond coil winding	A.C मोटर स्टेटर वाइंडिंग का प्रकार क्या है?	सिंगल लेयर बास्केट वाइंडिंग	डबल लेयर बास्केट वाइंडिंग	जटिल कुंडल वाइंडिंग	हीरा कुंडल वाईडिंग	A	1
9 Which formula is used to calculate percentage slip of an AC 3 phase induction motor?	$\frac{N_S - N_r}{N_S} \times 100$	$\frac{N_r - N_s}{N_s} \times 100$	$\frac{N_S - N_r}{N_r} \times 100$	$\frac{N_r - N_S}{N_r} \times 100$	एसी 3 कला इंडक्शन मोटर की प्रतिशत स्लिप की गणना करने के लिए किस सूत्र का उपयोग किया जाता है?	$\frac{N_S - N_\Gamma}{N_S} \times 100$	$\frac{N_r - N_s}{N_s} \times 100$	$\frac{N_S - N_r}{N_r} \times 100$	$\frac{N_r - N_s}{N_r} \times 100$	A	1

TOP START OR L2											1
11 What is the phase displacement between windings in 3 phase motor?	90°	120°	180°	360°	3 कला मोटर में वाइडिंग के बीच कला विस्थापन क्या है?	90 °	120°	180 °	360 °	В	1
12 What is the name of the part marked as 'X'?	Shaft	Brushes	Bearings	Slip rings	'एक्स' चिह्नित भाग का नाम क्या है?	शाफ़्ट	ब्रश	बियरिंग्स	स्लिप रिंग	D	1
The second secon											
13 What is the name of AC coil winding?	alf coil winding	Whole coil winding	Single layer winding	Double layer winding	AC काँइल वाइंडिंग का क्या नाम है?	आधा कुंडल वाइंडिंग	पूरे कुंडल वाइंडिंग	सिंगल लेयर वाइंडिंग	दोहरी परत वाइंडिंग	В	1
14 What is the name of the coil winding?	oncentric coil winding	Distributed coil winding	Mesh shaped coil winding	Diamond mesh shaped coil winding	कुंडली वाइंडिंग का नाम क्या है?	कंसींट्रेक कॉइल वाइंडिंग	वितरित कुंडल वाइंडिंग	जाल आकार की कुंडल वाइंडिंग	हीरे की जाली के आकार की कुंडल वाइंडिंग	D	1
X Y Z X X X X X X X X X X X X X X X X X									પારુ ા		
15 Which speed is called as synchronous speed in 3 phase induction motor?	lo load speed	Full load speed	Rotating magnetic field speed	Relative speed between stator and rotor	3 कला प्रेरण मोटर में किस गति को तुल्यकालिक गति कहा जाता है?	शून्य भार गति	फुल लोड स्पीड	चुंबकीय क्षेत्र की गति को घुमाते हुए	स्टेटर और रोटर के बीच सापेक्ष गति	С	1
16 What is the name of the starter symbol?	D.O.L starter	Auto transformer starter	Automatic star/delta starter	Semi automatic star/delta starter	स्टार्टर प्रतीक का नाम क्या है?	D.O.L स्टार्टर	ऑटो ट्रांसफार्मर स्टार्टर	स्वचालित स्टार / डेल्टा स्टार्टर	अर्ध स्वचालित स्टार / डेल्टा स्टार्टर	В	1
17 Name the part marked as 'X' of the winding machine?	Mandrel	Wire feed	Wire guides	Spool carrier	वाइंडिंग मशीन के भाग 'X' को चिह्नित करें?	खराद का धुरा	तार का चारा	तार गाइड	स्पूल वाहक	A	1
X X											
18 What is the electrical degree of 6 pole stator of motor?	360°	720°	1080°	1440°	6 पोल स्टेटर मोटर की विद्युत डिग्री क्या है?	360 °	720 °	1080°	1440 °	С	1

19 Calculate the number of coils per phase per pair of poles of 3 phase motor having 2 pole, 24 slots,12 coils?	1	2	3	4	2 ध्रुव, 24 खांचे, 12 कुंडली वाले 3 कला मोटर के कुंडली की संख्या प्रति फेज़ प्रति पोलों का जोड़ा की गणना करें?	1	2	3	4	D	1
What is the name of the starter symbol?	Star delta starter	Rheostatic starter	Direct on-line starter	Autotransformer starter	स्टार्टर प्रतीक का नाम क्या है?	स्टार डेल्टा स्टार्टर	रेस्टोरेटिक स्टार्टर	प्रत्यक्ष ऑन लाइन स्टार्टर	ऑटोट्रांसफॉमेर स्टार्टर	A	1
21 What is the formula to calculate pitch factor?	Pitch factor =	Pitch factor =	Pitch factor =	Pitch factor =	पिच कारक की गणना करने का सूत्र क्या है?	पिच कारक =	पिच कारक =	पिच कारक =	पिच कारक =	В	1
·	Pole pitch	Winding pitch	Number of slots	Number of poles		Pole pitch	Winding pitch	Number of slots	Number of poles		
	Winding pitch	Pole pitch	Number of poles	Number of slots		Winding pitch	Pole pitch	Number of poles	Number of slots		
22 How pole pitch is measured in terms of slots in					पोल वाइंडिंग को एसी वाइंडिंग में स्लॉट के संदर्भ					С	1
AC winding?	Total electrical degree	Number of slots	No. of slots in the stator	No. of poles	🔔 में कैसे मापा जाता है?	Total electrical degree	Number of slots	No. of slots in the stator	No. of poles		'
	Number of slots	Total electrical degree	No. of poles	No. of slots in the stato		Number of slots	Total electrical degree	No. of poles	No. of slots in the stator		
23 What is the formula to calculate the mean circumference of the coil?	$L_{\rm m} = \underline{L_{\rm out} - L_{\rm in}}_{\rm 2} \rm cm$	$L_{m} = L_{in} + L_{out} cm$	$L_{m} = \frac{2}{L_{out} - L_{in}} cm$	$L_{m} = \frac{2}{L_{in} + L_{out}} cm$	कॉइल की ओसत परिधि की गणना करने का सूत्र क्या है?	L _m = <u>L_{out}</u> - 祖捐	$L_{m} = \underbrace{L_{in} + L_{out}}_{2}$	$L_m = \frac{2 \overline{H}}{L_{out} - L_{in}}$	$L_m = 2 संमी $ $L_{in} + L_{out}$	В	1
24 What is the synchronous speed of a A.C 3 phase induction motor having 6 poles at a frequency of 50 Hertz?	800 rpm	1000 rpm	1200 rpm	1440 rpm	50 हर्ट्ज की आवृत्ति पर 6 ध्रुव वाले A.C 3 कला प्रेरण मोटर की तुल्यकालिक गति क्या है?	800 आरपीएम	1000 आरपीएम	1200 आरपीएम	1440 आरपीएम	В	2
25 Calculate the percentage slip in a 3 phase induction motor having 6 poles with a frequency of 50 Hertz rotating with actual speed of 960 rpm?	2%	3%	4%	5%	3 कला इंडक्शन मोटर में प्रतिशत स्लिप की गणना करें, जिसमें 50 हर्ट्ज़ की आवृत्ति के साथ 6 ध्रुव होते हैं, जो 960 आरपीएम की वास्तविक गति के साथ घूमते हैं?	2%	3%	4%	5%	С	2
26 What is the rotor frequency of a 3 phase squirrel cage induction motor at the time of starting?	Equal to supply frequency	3 times less than supply frequency	3 times more than supply frequency	√3 times less than supply frequency	3 कला की स्क्रिरल केज प्रेरण मोटर की रोटर आवृत्ति क्या है?	आपूर्ति की आवृत्ति के बराबर	आपूर्ति आवृत्ति से 3 गुना कम है	आपूर्ति आवृत्ति से 3 गुना अधिक	आपूर्ति की आवृत्ति से कई √3 गुना कम है	А	2
27 How the voltage is received in the rotor of induction motor?	Direct connection from stator	Due to back emf produced in stator	Direct connection to rotor from supply	By the transformer action of stator and rotor	इंडक्शन मोटर के रोटर में वोल्टेज कैसे प्राप्त होता है?	स्टेटर से सीधा संबंध	स्टेटर में उत्पादित बैक ईएमएफ के कारण	आपूर्ति से रोटर का सीधा संबंध	स्टेटर और रोटर का ट्रांसफार्मर कार्य द्वारा	D	2
28 Which method is applied to control the speed of 3 phase squirrel cage induction motor from its rotor side?	Cascade operation	Changing applied voltage	Changing applied frequency	Changing the number of poles	अपने रोटर पक्ष से 3 कला स्क्विरल केज प्रेरण मोटर की गति को नियंत्रित करने के लिए कौन सी विधि आरोपित की जाती है?	कैस्केड संचालन	आरोपित वोल्टेज बदल रहा है	आरोपित आवृत्ति में परिवर्तन	ध्रुवों की संख्या बदलना	A	2
29 Which loss of 3 phase induction motor is determined by blocked rotor test?	Copper loss	Friction loss	Hysteresis loss	Eddy current loss	अवरुद्ध रोटर परीक्षण द्वारा 3 कला प्रेरण मोटर का कौन सा नुकसान निर्धारित किया जाता है?	कॉपर की कमी	घर्षण हानि	हिस्टैरिसीस हानि	भंवर धारा हानि	A	2
30 Why pre heating is necessary for motors before varnishing in rewinding process?	To dry the varnish quickly in winding	To easy flow of varnish in the winding	To increase the insulation resistance value	To drive out the moisture in between winding layers	रिवाइंडिंग प्रक्रिया में वार्निशिंग से पहले मोटर के लिए प्री हीटिंग क्यों आवश्यक है?	वाइंडिंग में वानिश को जल्दी से सुखाने के लिए	वाइंडिंग में वार्निश के आसान प्रवाह के लिए	इन्सुलेशन प्रतिरोध मूल्य बढ़ाने के लिए	वाइंडिंग परतों के बीच की नमी को बाहर निकालने के लिए	D	2
31 Which type of test is conducted using internal growler in AC motor winding?	Ground test	Polarity test	Continuity test	Short circuit test	एसी मोटर वाइंडिंग में आंतरिक ग्राउलर का उपयोग करके किस प्रकार का परीक्षण किया जाता है?	ग्राउंड टेस्ट	ध्रुवता टेस्ट	निरंतरता परीक्षण	शॉर्ट सिकेट टेस्ट	D	2
32 Which device is used to test startor winding short and open fault?	Tong Tester	Internal Growler	External Growler	Digital multimeter	स्टार्टर वाइंडिंग शॉर्ट और ओपन फॉल्ट का परीक्षण करने के लिए किस उपकरण का उपयोग किया जाता है?	टोंग परीक्षक	आंतरिक ग्राउलर	बाहरी ग्राउलर	डिज़िटल मल्टीमीटर	В	2
33 What is the purpose of using thermal cutout in addition to fuse in A.C motor circuit?	Protect from heavy load	Protect against high voltage	Allow for continuous over loading	Protect against dead short circuit	A.C मोटर सकिट में फ्यूज के अलावा थर्मल कटआउट का उपयोग करने का उद्देश्य क्या है?	भारी भार से रक्षा करें	हाई वोल्टेज से बचाव करें	लगातार ओवर लोडिंग की अनुमति दें	मृत शॉर्ट सकिट से बचाएं	С	2
Which type of motor is used to provide high starting torque at variable speed?	Universal motor	Permanent capacitor motor	3 Phase slip ring induction motor	3 Phase single squirrel cage induction motor	परिवर्तित गति पर उच्च प्रारंभिक बलाघूर्ण प्रदान करने के लिए किस प्रकार की मोटर का उपयोग किया जाता है?	यूनिवर्सल मोटर	स्थायी संधारित्र मोटर	3 कला स्लिप रिंग प्रेरण मोटर	3 कला एकल स्क्विरल केज प्रेरण मोटर	С	2

35 What is the relation between torque and slip in an A.C induction motor?	Slip increases torque decreases	Slip increases torque increases	Slip decreases torque increases	Slip decreases torque decreases	A.C इंडक्शन मोटर में बलाघूर्णऔर स्लिप के बीच क्या संबंध है?	स्लिप बढ़ने से बलाघूर्णघटता है	स्लिप बढ़ने से बलाघूर्णबढ़ता है	स्लिप घटने से बलाघूर्णबढ़ता है	स्लिप घटने से बलाघूर्णघटता है	В	2
36 What is effect of A.C induction motor if rotor bar is in open circuit?	Vibration of shaft	Motor will not start	Runs in slow speed	Over heating of motor	यदि खुले सिकेट में रोटर बार हो तो A.C इंडक्शन मोटर का क्या प्रभाव होता है?	शाफ़्ट का कंपन	मोटर शुरू नहीं होगी	धीमी गति में चलता है	मोटर के अतिगर्म होने पर	D	2
37 Which type of wire is used for rewinding of A.C 3 phase motors?	Super enamelled copper wire	PVC covered copper winding wire	Single cotton covered copper wire	Double cotton covered copper wire	A.C 3 फेज मोटरों के रिवाइंडिंग के लिए किस प्रकार के तार का उपयोग किया जाता है?	सुपर एनामेल्ड कॉपर वायर	पीवीसी कवर तांबे वाइंडिंग तार	सिंगल कपास कवर कॉपर वायर	डबल कपास कवर तांबे के तार	A	2
38 Which material is used as wedges in winding process?	Empire	Cotton	Bamboo	Terylene	वाइंडिंग प्रक्रिया में वेजेज के रूप में किस सामग्री का उपयोग किया जाता है?	एम्पायर	कपास	बांस	टेरीलीन	С	2
39 Which test in winding is essential before giving supply?	Ground test	Polarity test	Open circuit test	Short circuit test	आपूर्ति देने से पहले वाइंडिंग में कौन सा परीक्षण आवश्यक है?	ग्राउंड टेस्ट	पोलरिटी टेस्ट	ओपन सर्किट टेस्ट	शॉर्ट सिकेट टेस्ट	В	2
40 Why the rotor bars are mounted in a slightly skewed position in 3 phase motor?	Generate maximum flux	Reduce the stray losses	Maintain the rotor speed constant	Produce more uniform rotor field and torque	रोटर चालकों को 3 कला मोटर में थोड़ी तिरछी स्थिति में क्यों रखा जाता है?	अधिकतम फ्लक्स उत्पन्न करें	स्ट्रे हानि कम करें	रोटर गति को स्थिर बनाए रखें	अधिक समान रोटर क्षेत्र और बलाघूर्णका उत्पादन करें	D	2
41 Which loss is determined by no load test of 3 phase induction motor?	Iron loss	Copper loss	Friction loss	Windage loss	3 कला इंडक्शन मोटर के नो लोड टेस्ट से कौन सी हानि निर्धारित होती है?	लौह हानि	ताम्र हानि	घर्षण हानि	वायु हानि	A	2
Which method of speed control two variable speeds only obtained in 3 phase motor?	By rotor rheostat control	By changing applied frequency	By changing the applied voltage	By changing the number of stator poles	3 कला मोटर में गति को नियंत्रित करने की कौन सी विधि में केवल दो चर गति प्राप्त होती है?	रोटर रिओस्टेट नियंत्रण द्वारा	आरोपित आवृत्ति बदलकर	आरोपित वोल्टेज को बदलकर	स्टेटर ध्रुवों की संख्या को बदलकर	D	2
43 Why slip ring induction motor is fitted with wound rotor?	To reduce the slip	To control the speed	To reduce the losses	To get high starting and running torque	स्लिप रिंग इंडक्शन मोटर को वाउंड रोटर से क्यों फिट किया जाता है?	स्लिप कम करना	गति को नियंत्रित करने के लिए	हानि को कम करने के लिए	उच्च स्टाटिंग और रनिंग बलाघूर्णपाने के लिए	D	2
44 What is the function of timer in automatic star delta starter?	Trip at over load	Switch ON at pre set time	Change from star to delta	Switch OFF at pre set time	स्वचालित स्टार डेल्टा स्टार्टर में टाइमर का कार्य क्या है?	ओवर लोड पर ट्रिप	पूर्व निर्धारित समय पर चालू करें	स्टार से डेल्टा में बदलें	पूर्व निधीरित समय पर स्विच ऑफ करें	С	2
Which instrument is used to measure insulation resistance of a 3 phase induction motor?	Megger	Multimeter	Shunt type ohmmeter	Series type ohmmeter	3 कला प्रेरण मोटर के इन्सुलेशन प्रतिरोध को मापने के लिए किस उपकरण का उपयोग किया जाता है?	मेगर	मल्टीमीटर	शंट टाइप ओह्ममीटर	श्रेणी प्रकार ओह्ममीटर	A	2
46 Which test in winding is illustrated?	Polarity test	Ground test	Continuity test	Short circuit test	वाइंडिंग में कौन सा परीक्षण सचित्र है?	ध्रुवता टेस्ट	ग्राउंड टेस्ट	निरंतरता परीक्षण	शॉर्ट सिकेट टेस्ट	A	2
47 What is the starting current of an A.C 3 phase induction motor?	1 to 2 times of full load current	2 to 3 times of full load current	4 to 5 times of full load current	5 to 6 times of full load current	A.C 3 फेज इंडक्शन मोटर का प्रारंभिक करंट क्या है?	पूर्ण भार धारा का 1 से 2 गुना	पूर्ण भार धारा का 2 से 3 गुना	पूर्ण भार धारा का 4 से 5 गुना	पूर्ण भार धारा का 5 से 6 गुना	D	2
48 Which method is used to control the speed of 3 phase induction motor from stator side?	By cascade operation	By rotor rheostat control	By injecting emf in rotor circuit	By changing the applied frequency	स्टेटर साइड से 3 कला इंडक्शन मोटर की गति को नियंत्रित करने के लिए किस विधि का उपयोग किया जाता है?	कैस्केड ऑपरेशन द्वारा	रोटर रिओस्टेट नियंत्रण द्वारा	रोटर सर्किट में ईएमएफ इंजेक्ट करके	आरोपित आवृत्ति बदलकर	D	2
49 What is the speed control method of 3 phase induction motor? SUP-RINGS MOTOR A MOTOR B MOTOR B	Cascade operation method	Rotor rheostat control method	Changing applied voltage method	Injecting emf in rotor circuit method	3 कला प्रेरण मोटर की गति नियंत्रण विधि क्या है?	केस्केड संचालन विधि	रोटर रिओस्टेट नियंत्रण विधि	आरोपित वोल्टेज बदलना विधि	रोटर सिकेट विधि में ईएमएफ इंजेक्शन	A	2
What are the two functional circuits incorporated with a three phase motor starter?	Open circuit and short circuit	Closed circuit and open circuit	Short circuit and closed circuit	Control circuit and power circuit	तीन कला मोटर स्टार्टर के साथ शामिल दो कार्यात्मक सर्किट क्या हैं?	ओपन सर्किट और शॉर्ट सर्किट	क्लोज सर्किट और ओपन सर्किट	शॉर्ट सर्किट और क्लोज सर्किट	नियंत्रण सर्किट और पावर सर्किट	D	2

				Τ		1 3 0					
51 Which is the main property of leatheroid paper insulation?	Non moisturized material	Highly non- hygroscopic	Very good for class F insulation	Better ageing and dielectric strength	लेदरॉइड पेपर इन्सुलेशन का मुख्य गुण कौन सा है?	गैर मॉइस्चराइज्ड सामग्री	अत्यधिक गैर- हाइग्रोस्कोपिक	श्रेणी एफ इन्सुलेशन के लिए बहुत अच्छा है	बेहतर एजिंग और परावैद्युत शक्ति	D	2
52 Which type of insulating material is selected for binding the coils and over hangs?	Cotton sleeves	Empire sleeves	Terylene thread	Fibre glass tape	कुंडल और ओवर हैंग बांधने के लिए किस प्रकार की इंसुलेटिंग सामग्री का चयन किया जाता है?	सूती स्लीव्स	एम्पायर स्लीव्स	टेरेलीन धागा	फाइबर ग्लास टेप	С	2
53 Which insulation is used for cuffing in AC winding?	Fibre glass tape	Leatheroid paper	Empire fiber glass tape	Fabric based adhesive tape	एसी वाइंडिंग में कर्फिंग के लिए किस इंसुलेशन का उपयोग किया जाता है?	फाइबर ग्लास टेप	चमड़े का कागज	एम्पायर फाइबर ग्लास टेप	कपड़े पर आधारित चिपकने वाला टेप	D	2
54 What refers coil in AC winding?	Number of turns connected in series	Number of turns connected in parallel	Number of turns under two similar poles	Number of turns under two dissimilar poles	एसी वाइंडिंग में कॉइल को क्या कहते हैं?	श्रेणी में जुड़े घुमावों की संख्या	समानांतर में जुड़े घुमावों की संख्या	दो समान ध्रुवों के अंतर्गत घुमावों की संख्या	दो असमान ध्रुवों के अंतर्गत घुमावों की संख्या	А	2
55 Which type of AC winding the number of coil/pole/phase is more than one at different pitches?	Involute coil winding	Diamond coil winding	Flat loop over lapped winding	Flat loop non-over lapped winding	किस प्रकार की एसी वाइंडिंग की विभिन्न पिचों पर कुंडली / पोल / कला की संख्या एक से अधिक है?			लैप्ड वाइंडिंग पर फ्लैट लूप	फ्लैट लूप नॉन-ओवर लैप्ड वाइंडिंग	D	2
56 Calculate the number of coils /phase/ pole for a 3 phase double layer distributed winding for a motor having 36 slots, 36 coils and 4 poles?	3 coils /phase/ pole	6 coils / phase/pole	9 coils / phase/pole	12 coils/ phase/ pole	36 स्लॉट्स, 36 कॉइल्स और 4 पोल वाले मोटर के लिए 3 कला डबल परत वितरित वाइंडिंग के लिए कॉइल की संख्या / कला / पोल की गणना करें?	3 कॉइल / कला / पोल	६ कॉइल / कला / पोल	9 कॉइल / कला / पोल	12 कॉइल / कला / पोल	А	2
57 What is the type of rewinding process?	Hand winding	Skein winding	Former winding	Machine winding	रिवाइंडिंग प्रक्रिया का प्रकार क्या है?	हाथ से लपेटना	स्कीइन वाइंडिंग	फॉमेर वाइंडिंग	मशीन वाइंडिंग	A	2
58 Which type of starter is used to start and run the 3 phase slip ring induction motor?	Direct on-line starter	Rotor rheostat starter	Auto transformer starter	Manual star-delta starter	3 फेज स्लिप रिंग इंडक्शन मोटर को शुरू करने और चलाने के लिए किस प्रकार के स्टार्टर का उपयोग किया जाता है?	प्रत्यक्ष ऑन लाइन स्टार्टर	रोटर रियोस्टैट स्टार्टर	ऑटो ट्रांसफार्मर स्टार्टर	मैनुअल स्टार-डेल्टा स्टार्टर	В	2
59 What is the function of collar?	Provides insulation around field	Provides insulation for coil tapping	Helps tightening material for flange	Provides insulation for heat transfer from coil	कॉलर का कार्य क्या है?	क्षेत्र के चारों और इन्सुलेशन प्रदान करता है	कुंडल टेपिंग के लिए इन्सुलेशन प्रदान करता है	निकले हुए किनारे के लिए सामग्री को कसने में मदद करता है	कुंडल से ऊष्मा स्थास्तांतरण के लिए इन्सुलेशन प्रदान करता है	A	2
60 Which type of winding wire is used to wind submersible pump motors?	PVC covered type	Terylene thread type	Super enamelled type	Double cotton covered type	किस प्रकार के वाइंडिंग तार को सबमसिबल पंप मोटर्स को वाइंडिंग करने के लिए उपयोग किया जाता है?	पीवीसी कवर प्रकार	टेरलीन थ्रेड प्रकार	सुपर एनामेल्ड टाइप	डबल सूती कवर प्रकार	A	2
61 What is the reason of long chord winding is avoided in AC motors?	Low efficiency	Low starting torque	More winding wire required	Less heat dissipation	एसी मोटरों में लंबी कॉर्ड वाइंडिंग न करने का क्या कारण है?	कम दक्षता	कम शुरुआती बलाघूर्ण	अधिक वाइंडिंग तार की आवश्यकता	कम गर्मी अपव्यय	С	2
62 Which type of winding has more space for cooling?	Between overhanging coils	Between overhanging coil and rotor	Between overhanging coils and yoke	Between overhanging coil and wedge	शीतलन के लिए किस प्रकार की वाइंडिंग में अधिक जगह है?	ओवरहैंगिंग कॉइल के बीच	ओवरहैंगिंग कॉइल और रोटर के बीच	ओवरहैंगिंग कॉइल और योक के बीच	ओवरहैंगिंग कॉइल और वेज के बीच	С	2
63 Where the panel boards are used?	Industrial motor drives	Domestic wiring circuits	3 phase domestic wiring	Load distribution for AC & DC supply	पैनल बोर्ड कहां उपयोग किए जाते हैं?	औद्योगिक मोटर ड्राइव	घरेलू वायरिंग सर्किट	3 कला घरेलू वायरिंग	एसी और डीसी आपूर्ति के लिए लोड वितरण	С	2
64 Determine the torque in newton metres produced by a 7.5 HP squirrel cage motor rotating at 1440 rpm?	21.63 Nm	24.4 Nm	33.05 Nm	36.6 Nm	1440 rpm पर घूर्णन कर रहे 7.5 HP स्क्विरल केज मोटर द्वारा निर्मित बलाघूर्ण न्यूटन मीटर में ज्ञात करें?	21.63 Nm	24.4 Nm	33.05 Nm	36.6 Nm	D	2

65 Which type of handle design of rotary switch is illustrated?	Knob	Lever	Coin slot	Key operation	रोटरी स्विच के किस प्रकार के डिजाइन का सचित्र वर्णन किया गया है?	दस्ता	उत्तोलक	सिक्के का स्लॉट	कुंजी संचालन	С	2
66 What is the purpose of using rotor resistance starter to start 3 phase slip ring induction motor?	Reduce rotor voltage	Reduce rotor current	Increase the torque	Reduce the power loss	3 कला स्लिप रिंग इंडक्शन मोटर शुरू करने के लिए रोटर प्रतिरोध स्टार्टर का उपयोग करने का उद्देश्य क्या है?	रोटर वोल्टेज कम करें	रोटर करंट को कम करें	बलाघूर्ण को बढ़ाएं	बिजली की कमी को कम करें	С	2
67 Which method of speed control is only applicable for 3 phase slipring induction motor?	Cascade operation method	Rotor rheostat speed control	Changing the applied frequency method	Changing the number of stator poles method	गति नियंत्रण की कौन सी विधि केवल 3 कला की स्लिप रिंग इंडक्शन मोटर के लिए आरोपित है?	केस्केड संचालन विधि	रोटर रिओस्टेट गति नियंत्रण	आरोपित आवृत्ति विधि को बदलना	स्टेटर ध्रुव विधि की संख्या को बदलना	В	2
68 What is the name of the winding?	Skew winding	Skein winding	Involute coil winding	Diamond coil winding	वाइंडिंग का नाम क्या है?	तिरछी वाईडिंग	स्कीइन वाइंडिंग	जिटेल कुंडल वाईडिंग	हीरा कुंडल वाईडिंग	A	2
69 What is the name of 3 phase motor winding, if the coil pitch is less than pole pitch?	Full pitch winding	Whole coil winding	Long chorded winding	Short chorded winding	3 कला मोटर वाइंडिंग का नाम क्या है, यदि कुंडली पिच पोल पिच से कम है?	पूर्ण पिच वाइंडिंग	पूरे कुंडल वाइंडिंग	लंबी कॉर्डेड वाइंडिंग	शॉर्ट कॉर्डेड वाइंडिंग	D	2
70 Which is the demerit of 3 phase concentric winding?	More space is required	A stepped former is required	More difficult to shape the coils uniformly	It is not easy to make the end connection	3 कला संकेंद्रित वाइंडिंग का अवगुण कौन सा है?	अधिक जगह की आवश्यकता है	एक स्तेप्ड फॉर्मर की आवश्यकता है	काँइल्स को समान रूप से आकार देने के लिए और अधिक कठिन	अंत कनेक्शन बनाना आसान नहीं है	В	2
71 What is the name of the diagram used for 3phase motor winding? POLE1	Ring diagram	Development diagram	Coil connection diagram	End connection diagram	3phase मोटर वाइंडिंग के लिए प्रयुक्त आरेख का नाम क्या है?	अँगूठी का आरेख	विकास आरेख	कुंडल कनेक्शन आरेख	अंत कनेक्शन आरेख	А	2
72 Calculate the phase displacement in terms of slots for a 3 phase, 36 slots, 12 coils, 4 pole stator winding?	3 slots	4 slots	6 slots	8 slots	3 कला, 36 स्लॉट, 12 कॉइल, 4 पोल स्टेटर वाइंडिंग के लिए स्लॉट के संदर्भ में कला विस्थापन की गणना करें?	3 स्लॉट	4 स्लॉट	६ स्लॉट	8 स्लॉट	С	2
73 Which type of AC motor winding having the number of coil/pole/phase is more than one arranged in different slots?	Basket winding	Concentric winding	Distributed winding	Concentrated winding	कॉइल / पोल / कला की संख्या वाले एसी मोटर वाइंडिंग किस प्रकार के अलग-अलग स्लॉट में व्यवस्थित होते हैं?	टोकरी वाइंडिंग	संकेंद्रित वाइंडिंग	वितरित वाइंडिंग	एकाग्र वाइंडिंग	С	2
74 Which type of testing of winding is illustrated?	Polarity test	Resistance test	Short circuit test	Voltage drop test	वाइंडिंग के किस प्रकार के परीक्षण का चित्रण किया गया है?	ध्रुवता टेस्ट	प्रतिरोध परीक्षण	शॉर्ट सर्किट टेस्ट	वोल्टेज ड्रॉप परीक्षण	В	2
75 Why external resistance is included in the rotor circuit at starting through 3 phase slipring induction motor starter?	To get high running torque	To get high starting torque	To reduce the load current	To get increased speed at starting	स्टार्टिंग में रोटर सर्किट में बाहरी प्रतिरोध को 3 फेज स्लिपरिंग इंडक्शन मोटर स्टार्टर के माध्यम से क्यों शामिल किया गया है?	उच्च रनिंग बलाघूर्ण पाने के लिए	उच्च प्रारंभिक बलाघूर्ण प्राप्त करने के लिए	लोड करंट को कम करने के लिए	शुरू करने में उच्च वृद्धि की गति प्राप्त करने के लिए	В	3

i	What is the effect of motor, if the rotor windings n slipring induction motor is open circuited at starting?	Will not run	Runs at slow speed	Runs at very high speed	Runs but not able to pull load	यदि स्लिप रिंग इंडक्शन मोटर में रोटर वाइंडिंग खुले परिपथ में स्टार्टिंग किया जाता है, मोटर का प्रभाव क्या होता है?	नहीं चलेगी	धीमी गति से चलती है	बहुत तेज गति से चलती है	चलती है, लेकिन लोड खींचने में सक्षम नहीं है	A	3
	What happens to a 3 phase induction motor if one phase fails during running?	Motor runs normally	Motor stop instantaneously	Motor runs slowly, finally it burns	Motor runs with irregular speed	यदि एक कला चलने के दौरान विफल हो जाता है तो 3 कला प्रेरण मोटर का क्या होता है?	मोटर सामान्य रूप से चलती है	मोटर तुरंत बंद करो	मोटर धीरे-धीरे चलती है, आखिरकार जल जाती है	मोटर अनियमित गति से चलती है	С	3
	What is the effect on 3 phase induction motor if one phase is cut-off during running with load?	Motor stops at once	Motor will run normally	Motor runs with humming noise with slow speed	Motor will run slow speed but winding will be burnt out shortly	लोड के साथ चलने के दौरान एक कला कट-ऑफ होने पर 3 कला इंडक्शन मोटर पर क्या प्रभाव पड़ता है?	मोटर एक बार में रुक जाती है	मोटर सामान्य रूप से चलेगी	मोटर धीमी गति के साथ गुनगुने शोर के साथ चलती है	मोटर धीमी गति से चलेगी लेकिन थोड़ी ही देर में वाइंडिंग जल जाएगी	D	3
	What is the defect, if starter with single phasing preventer does not switch 'ON'?	Improper phase sequence	Fluctuations in line voltage	Loose contact in supply lines	Wrong terminal connections at motor	एकल कलाबद्ध प्रिवेंटर के साथ स्टार्टर 'चालू' नहीं होने पर क्या दोष है?	अनुचित कला क्रम	लाइन वोल्टेज में उतार-चढ़ाव	आपूर्ति लाइनों में ढीला संयोजन	मोटर पर गलत टर्मिनल संयोजन	A	3
	What is the defect in AC 3 phase induction motor runs at low speed if loaded?	Wrong motor connection	Wrong starter connection	Open circuit in rotor winding	Partially shorted stator winding	लोड होने पर एसी 3 फेज इंडक्शन मोटर में कम गति पर चलने में दोष क्या है?	गलत मोटर कनेक्शन	गलत स्टार्टर कनेक्शन	रोटर वाइंडिंग में खुला सर्किट	स्टेटर वाइंडिंग में आंशिक रूप से लघुपथन	D	3
	Which fault condition thermal overload relay protects A.C induction motor?	Short circuit	Open circuit	Over current	Under voltage	कौन सी दोष स्थिति में थर्मल अधिभार रिले A.C प्रेरण मोटर की रक्षा करता है?	शार्ट सकिट	खुला परिपथ	अतिधारा	कम वोल्टेज	С	3
	What happens to the rotor of a 3 phase induction motor if its speed attains to synchronous speed?	Rotor speed reduces	Rotor speed increases	Rotor speed remains same	Rotor bars get damaged	यदि 3 कला इंडक्शन मोटर की रोटर तुल्यकालिक गति को प्राप्त कर लेती है, तो रोटर का क्या होता है?	रोटर की गति कम हो जाती है	रोटर की गति बढ़ जाती है	रहती है	रोटर बार क्षतिग्रस्त हो जाते हैं	D	3
	What is the effect of open circuit in rotor of an nduction motor?	Motor does not start	Over heating in motor	Excess vibration of shaft	Motor runs with very low speed	इंडक्शन मोटर के रोटर में खुले सकिट का क्या प्रभाव होता है?	मोटर शुरू नहीं होती है	मोटर में ओवर हीटिंग	शाफ्ट का अतिरिक्त कंपन	मोटर बहुत कम गति से चलती है	D	3
	What is the reason for frequent blowing of fuse after motor running some time?	Improper earthing	Over loading of motor	Heavy voltage fluctuation	Poor insulation in winding	मोटर के कुछ समय चलने के बाद फ्यूज के लगातार उड़ने का क्या कारण है?	अनुचित अर्थिंग	मोटर की ओवर लोडिंग	भारी वोल्टेज उतार- चढ़ाव	वाइंडिंग में खराब इन्सुलेशन	D	3
	What happens to a 3 phase induction motor, if one phase fails during starting?	Motor runs and stop immediately	Motor runs in slow speed continuously	Motor runs and draws more current	Motor continues to run with irregular speed	3 कला प्रेरण मोटर का क्या होता है, अगर एक कला शुरू होने के दौरान विफल हो जाता है?	मोटर चलती है और तुरंत रुक जाती है	मोटर लगातार धीमी गति में चलती है	मोटर चलती है और अधिक धारा खींचती है	अनियमित गति से मोटर चलती रहती है	A	3
	Which is the cause for the 3 phase motor starter with single phase preventer trips frequently?	Incorrect fuse ratings	Unbalanced line voltage	Incorrect settings of OLR	Improper phase sequence	3 फेज मोटर स्टार्टर का सिंगल फेज प्रिवेंटर के साथ बार-बार ट्रिप का कारण कौन सा है?	गलत फ्यूज रेटिंग	असंतुलित लाइन वोल्टेज	OLR की गलत सेटिंग	अनुचित कला क्रम	С	3
i	What indication denotes the shorted coil defect n 3 phase motor stator winding while testing with nternal growler by keeping hacksaw blade?	Hacksaw blade gets over heated	Rapid vibration of hacksaw blade	Hacksaw blade repels against the slots	Attracted by the winding turns on the slot	3 कला मोटर स्टेटर वाइंडिंग में आंतरिक ग्राउलर परीक्षण करते समय हैकसॉ ब्लेड रखकर लघुपथित कुंडली दोष क्या प्रदर्शित करता है?	Hacksaw ब्लेड गर्म हो जाता है	हेकसाँ ब्लेड का तेजी से कंपन	हैकसाँ ब्लेड स्लॉट्स के खिलाफ repels	स्लॉट पर वाइंडिंग घुमाव से आकर्षित	В	3

		.				NSQF - Module 4 - AC Single Phase Moto			T			
#	Question	OPT A	ОРТ В	OPT C	OPT D	Question	OPT A	ОРТ В	OPT C	OPT D	Ans	Levels
1	What is the working principle of single phase induction motor?	Lenz's law	Joule's law	Faraday's laws of electrolysis	Faraday's laws of electromagnetic induction	एकल चरण प्रेरण मोटर का कार्य सिद्धांत क्या है?	लेन्ज का नियम	जूल का नियम	फैराडे के विद्युत अपघटन के नियम	फैराडे के विद्युत चुम्बकीय प्रेरण के नियम	A	1
2	What is the name of single phase motor?	Permanent capacitor motor	Induction start capacitor run motor	Capacitor start capacitor run motor	Capacitor start induction run motor	सिंगल फेज मोटर का क्या नाम है?	स्थायी संधारित्र मोटर	इंडक्शन स्टार्ट कैपेसिटर रन मोटर	कैपेसिटर स्टार्ट कैपेसिटर रन मोटर	कैपेसिटर स्टार्ट इंडक्शन रन मोटर	A	1
3	What is the working principle of split phase motor?	Lenz's law	Joule's law	Faraday's laws of electrolysis	Faraday's laws of electromagnetic induction	स्पीलीट चरण मोटर का कार्य सिद्धांत क्या है?	लेन्ज का नियम	जूल का नियम	फैराडे के विद्युत अपघटन के नियम	फैराडे के विद्युत चुम्बकीय प्रेरण के नियम	A	1
4	Which type of single phase motor is illustrated?	Universal motor	Permanent capacitor motor	Capacitor start induction run motor	Capacitor start capacitor run motor	एकल चरण मोटर किस प्रकार का निदर्शित है?	यूनिवर्सल मोटर	स्थायी संधारित्र मोटर	कैपेसिटर स्टार्ट इंडक्शन रन मोटर	कैपेसिटर स्टार्ट कैपेसिटर रन मोटर	D	1
5	Which type of A.C single phase motor is classified under commutator motor type?	Stepper motor	Repulsion motor	Shaded pole motor	Permanent capacitor motor	ए सी सिंगल फेज मोटर किस प्रकार को कम्यूटेटर मोटर प्रकार के तहत वर्गीकृत किया जाता है?	स्टेपर मोटर	प्रतिकर्षण मोटर	आच्छादित पोल मोटर	स्थायी संधारित्र मोटर	В	2
6	Which method is adopted to start the single phase induction motor?	Split phase method	Varying supply voltage method	Reversal of input supply terminals	Reversal of running coil connection	सिंगल फेज इंडक्शन मोटर शुरू करने के लिए कौन सी विधि अपनाई जाती है?	फेज़ विभाजन की विधि	परिवर्ती आपूर्ति वोल्टेज विधि	इनपुट आपूर्ति टर्मिनलों का उल्टा	रनिंग कुंडली कनेक्शन का उलटा करना	Α	2
7	What is the type of A.C single phase motor?	Permanent capacitor motor	Capacitor start capacitor run motor	Induction start induction run motor	Capacitor start induction run motor	A.C सिंगल फेज मोटर का प्रकार क्या है?	स्थायी संधारित्र मोटर	कैपेसिटर स्टार्ट कैपेसिटर रन मोटर	इंडक्शन स्टार्ट इंडक्शन रन मोटर	कैपेसिटर स्टार्ट इंडक्शन रन मोटर	D	2
8	What is the purpose of the capacitor (C) in centrifugal switch speed control method of universal motor?	Maintain constant speed	Improve the power factor	Protect from the over loading	Reduce the sparks on the contacts	सार्वभौमिक मोटर के अपकेंद्री स्विच गति नियंत्रण विधि में संधारित्र (C) का उद्देश्य क्या है?	निरंतर गति बनाए रखें	पावर फैक्टर में सुधार	ओवर लोडिंग से बचाएं	संपर्कों पर स्पार्क कम करें	D	2
9	Which type of winding wire is used for rewinding submersible pumps?	PVC covered copper wire	Super enamelled copper wire	Single cotton covered copper wire	Double cotton covered copper wire	सबमसिबल पंपों को रीवाइंड करने के लिए किस प्रकार के वाइंडिंग तार का उपयोग किया जाता है?	पीवीसी कवर तांबे के तार	सुपर एनामेल्ड कॉपर वायर	सिंगल कॉटन कवर कॉपर वायर	डबल कपास कवर तांबे के तार	Α	2
10	Which type of AC single phase motor having low starting torque?	Induction start induction run motor	Capacitor start induction run motor	Capacitor start capacitor run motor	Resistance start induction run motor	किस प्रकार के एसी सिंगल फेज मोटर में कम स्टार्टिंग टॉर्क होता है?	इंडक्शन स्टार्ट इंडक्शन रन मोटर	कैपेसिटर स्टार्ट इंडक्शन रन मोटर	कैपेसिटर स्टार्ट कैपेसिटर रन मोटर	प्रतिरोध स्टार्ट इंडक्शन रन मोटर	D	2
	What is the function of centrifugal switch in single phase motors?	Maintain constant speed	Break the starting winding	Break the running winding		एकल चरण मोटर्स में अपकेंद्री स्विच का कार्य क्या है?		आरंभिक वाइंडिंग को विसंयोजित करना	रनिंग वाइंडिंग को विसंयोजित करना	मोटर को ओवर लोडिंग से बचाएं	В	2
12	Which is the application of universal motor?	Jet pump	Food mixer	Teleprinter	Compressor	सार्वभौमिक मोटर का अनुप्रयोग कौन सा है?	जेट पंप	भोजन मिक्सर	टेलीप्रिंटर	कंप्रेसर	В	2

13 Which single phase motor is fitted with wound	Repulsion motor	Shaded pole motor	Permanent	Capacitor start	वाउंड रोटर के साथ कौन सी एकल कला मोटर	प्रतिकर्षण मोटर	आन्छाटित पोल मोटर	स्थायी संधारित्र मोटर्स	संधारित्र प्रारंभ	Δ	2
rotor?	repulsion motor	Chiadea pole moter	capacitor motor		फिट है?	ZIKITI T T III C	Thought litting	CHI CHIO	संधारित्र रन मोटर्स	,,	
14 What is the relation between running winding and starting winding of a single phase induction motor with respect to resistance?	Both resistances will be equal	Running winding is less, starting winding more	Running winding is more, starting winding less	Running winding is less, starting winding infinity	प्रतिरोध के संबंध में एकल चरण इंडक्शन मोटर की रनिंग वाइंडिंग और स्टार्टिंग वाइंडिंग के बीच क्या संबंध है?	दोनों प्रतिरोध बराबर होंगे	रनिंग वाइंडिंग कम है, वाइंडिंग अधिक	रनिंग वाइंडिंग अधिक है, स्टार्टिंग वाइंडिंग कम	रनिंग वाईडिंग कम, स्टार्टिंग वाइंडिंग अनंत	В	2
15 What is the function of the part marked as 'x' in shaded pole motor?	Increase the efficiency	Maintain constant speed	Initiate the rotor movement	Strengthen the magnetic field	आच्छादित पोल मोटर में 'x' के रूप में चिह्नित भाग का कार्य क्या है?	दक्षता बढ़ाएं	निरंतर गति बनाए रखें	रोटर घुमाव शुरू करें	चुंबकीय क्षेत्र को मजबूत करें	С	2
16 How the direction of rotation of a capacitor start induction run motor is reversed?	By changing the supply terminals	By changing the capacitor connections	By interchanging main winding terminals	By interchanging both main and auxiliary winding terminals	कैपेसिटर स्टार्ट इंडक्शन रन मोटर के रोटेशन की दिशा कैसे उलट जाती है?	आपूर्ति टमिनलों को बदलकर	संधारित्र कनेक्शनों को बदलकर	मुख्य वाईडिंग टर्मिनलों को आपस में बदल करके	दोनों मुख्य और सहायक वाइंडिंग टर्मिनलों को इंटरचेंज करके	С	2
17 Which single phase motor tapped field speed control method is employed?	Universal motor	Shaded pole motor	Capacitor start induction run motor	Capacitor start capacitor run motor	किस एकल कला की मोटर में टेप फील्ड स्पीड कंट्रोल विधि कार्यरत है?	यूनिवर्सल मोटर	आच्छादित पोल मोटर	कैपेसिटर स्टार्ट इंडक्शन रन मोटर	कैपेसिटर स्टार्ट कैपेसिटर रन मोटर	A	2
18 Which type of single phase induction motor is used in food mixer?	Universal motor	Repulsion motor	Shaded pole motor	Permanent capacitor motor	खाद्य मिक्सर में किस प्रकार की एकल चरण प्रेरण मोटर का उपयोग किया जाता है?	यूनिवर्सल मोटर	प्रतिकर्षण मोटर	आच्छादित पोल मोटर	स्थायी संधारित्र मोटर	A	2
19 What is the angular displacement between starting and running winding of a single phase induction motor?	45 electrical degree	60 electrical degree	90 electrical degree	120 electrical degree	एकल चरण प्रेरण मोटर की स्टाटिंग और रनिंग वाइंडिंग के बीच कोणीय विस्थापन क्या है?	45 इलेक्ट्रिकल डिग्री	60 इलेक्ट्रिकल डिग्री	90 इलेक्ट्रिकल डिग्री	120 इलेक्ट्रिकल डिग्री	С	2
20 Why the hysteresis motor is suitable for sound recording instruments?	Small in size	High efficiency	Noiseless operation	Less error operation	ध्वनि रिकॉडिंग उपकरणों के लिए हिस्टैरिसीस मोटर उपयुक्त क्यों है?	आकार में छोटा	उच्च दक्षता	शांत प्रचालन	कम त्रुटि प्रचालन	С	2
21 Which motor is preferred for domestic water pumps?	Universal Motor	Repulsion motor	Shaded pole motor	Capacitor start motor	घरेलू पानी पंपों के लिए कौन सी मोटर पसंद की जाती है?	यूनिवर्सल मोटर	प्रतिकर्षण मोटर	आच्छादित पोल मोटर	संधारित्र प्रारंभ मोटर	D	2
22 Which type of motor has relatively small starting torque?	Universal motor	Capacitor start capacitor run motor	Capacitor start induction run motor	Resistance start induction run motor	किस प्रकार की मोटर में अपेक्षाकृत कम टॉर्क होता है?	यूनिवर्सल मोटर	कैपेसिटर स्टार्ट कैपेसिटर रन मोटर	कैपेसिटर स्टार्ट इंडक्शन रन मोटर	प्रतिरोध शुरू इंडक्शन रन मोटर	D	2
23 What is the function of centrifugal switch in split phase motor?	Protects from over current	Maintains constant speed	Protect the motor from over loading	Make and break the starting winding from supply	स्पीलीट कला मोटर में अपकेंद्री स्विच का कार्य क्या है?	अति धारा से बचाता है	निरंतर गति बनाए रखता है	मोटर को ओवर लोडिंग से बचाएं	आपूर्ति से शुरुआती वाइंडिंग बनाएं और तोड़ें	D	2
24 How to produce starting torque in a shaded pole fan motor?	Using rings on poles	Using capacitor on winding circuits	Interchanging cage rotor windings by switch	Interchanging the field coil windings by switch	एक आच्छादित पोल पंखा मोटर में स्टाटिंग टाके का उत्पादन कैसे करें?	ध्रुव पर छल्ले का उपयोग करना	संधारित्र का उपयोग करना	स्विच द्वारा केज रोटर वाइन्डिंग को बदलना	स्विच द्वारा फ़ील्ड कॉइल वाइंडिंग को इंटरचेंज करना	A	2
25 What is the reason to use a permanent capacitor in fan motor circuit?	Speed regulation	Lower power consumption	Splitting of phase for torque	Controlling electrical interference	पंखा मोटर सकिट में एक स्थायी संधारित्र का उपयोग करने का कारण क्या है?	गति नियमन	बिजली की कम खपत	टार्क के लिए कला का विभाजन	विद्युत व्यतिकरण को नियंत्रित करना	С	2
26 Which motor is having half coil winding?	Mixer	Grinder	Ceiling fan	Washing machine	कौन सी मोटर में आधी कुंडल वाइंडिंगर होती है?	मिक्सर	ग्राइंडर	छत का पंखा	वॉशिंग मशीन	С	2
27 Why running winding is placed in the bottom of the core?	To get low resistance	To get low inductance	To get high resistance	To get high inductance	रिनंग वाइंडिंग कोर के निचले भाग में क्यों रखी जाती है?	कम प्रतिरोध पाने के लिए	कम प्रेरण पाने के लिए	उच्च प्रतिरोध प्राप्त करने के लिए	उच्च प्रेरण प्राप्त करने के लिए	D	2
28 Calculate the slot distance for a ceiling fan having 28 slots, 14 poles, 14 coils in half coil connection?	90°	120°	180°	240°	आधे कुंडल कनेक्शन में 28 स्लॉट्स, 14 ध्रुव, 14 कॉइल वाले सीलिंग फैन के लिए स्लॉट की दूरी की गणना करें?	90°	120 °	180°	240 °	A	2
29 What is the application of shaded pole motor?	Hair dryer	Ceiling fan	Wet grinder	Washing machine	आच्छादित पोल मोटर का अनुप्रयोग क्या है?	हेयर ड्रायर	<u>पंखा</u>	गीला ग्राइंडर	वॉशिंग मशीन	А	2

30 Which type of single phase motor is used for hard disk drives?	Stepper motor	Repulsion motor	Hysteresis motor	Reluctance motor	हार्ड डिस्क ड्राइव के लिए किस प्रकार की सिंगल फेज मोटर का उपयोग किया जाता है?	स्टेपर मोटर	प्रतिकर्षण मोटर	हिस्टैरिसीस मोटर	रिलक्टेंस मोटर	Α	2
31 What is the function of centrifugal switch used in capacitor start, capacitor run induction motor?	Disconnect the running winding after reached 75% to 80% speed	Disconnect the starting winding after reached 75% to 80% speed	Disconnect the starting capacitor after reached 75% to 80% speed	Disconnect the starting and running winding after reached 75% to 80% speed	कैपेसिटर स्टार्ट, कैपेसिटर रन इंडक्शन मोटर में	75% से 80% की गति तक पहुंचने के बाद चालू वाइंडिंग को डिस्कनेक्ट करें	75% से 80% की गति तक पहुंचने के बाद शुरुआती वाइंडिंग को डिस्कनेक्ट करें	75% से 80% की गति तक पहुंचने के बाद शुरुआती संधारित्र को डिस्कनेक्ट करें	75% से 80% की गति तक पहुंचने के बाद शुरू और चालू वाइंडिंग को डिस्कनेक्ट करें	С	2
32 Which type of single phase motor is having very high starting torque than any other type of single phase motor?	Universal motor	Reluctance motor	Repulsion start induction run motor	Capacitor start induction run motor	किस प्रकार की सिंगल फेज मोटर का किसी अन्य प्रकार की सिंगल फेज मोटर की तुलना में बहुत अधिक स्टार्टिंग टॉर्क है?	यूनिवर्सल मोटर	रिलक्टेंस मोटर	प्रतिकर्षण प्रारंभ प्रेरण रन मोटर	कैपेसिटर स्टार्ट प्रेरण रन मोटर	A	2
33 Where the capacitor is connected in a single phase permanent capacitor motor?	In series with starting winding	In series with running winding	In parallel with starting winding	In parallel with running winding	संधारित्र को एकल कला स्थायी संधारित्र मोटर में कहाँ जोड़ा जाता है?	स्टार्टिंग वाइंडिंग के साथ श्रृंखला में	रनिंग वाइंडिंग के साथ श्रृंखला में	स्टार्टिंग वाइंडिंग के साथ समानांतर में	समानांतर में रनिंग वाइंडिंग के साथ	A	2
34 Which motor is used in table fan?	Universal motor	Shaded pole motor	Eddy current motor	Permanent capacitor motor	टेबल पंखे में किस मोटर का उपयोग किया जाता है?	यूनिवर्सल मोटर	आच्छादित पोल मोटर	भंवर धारा मोटर	स्थायी संधारित्र मोटर	D	2
What is the effect, if coil group connection is wrongly connected in a single phase motor rewinding?	Motor runs slowly	Motor will not run	Motor runs in very high speed	Motor runs and takes more current at no load	एक एकल कला मोटर रिवाइंडिंग में कुंडल समूह कनेक्शन गलत तरीके से जुड़ा हुआ है, तो क्या प्रभाव है?	मोटर धीरे-धीरे चलती है	मोटर नहीं चलेगी	मोटर बहुत तेज गति में चलती है	मोटर चलती है और बिना किसी लोड पर अधिक धारा लेती है	В	3
What is the effect in a repulsion motor, if the magnetic axis shifted to another side?	Direction of rotation will change	Direction of rotation remains same	Motor speed increases from rated speed	Motor speed will reduce from rated speed	प्रतिकर्षण मोटर में क्या प्रभाव होता हैं, यदि चुंबकीय अक्ष दूसरी तरफ स्थानांतरित हो जाता है?	रोटेशन की दिशा बदल जाएगी	रोटेशन की दिशा समान रहती है	मोटर की गति रेटेड गति से बढ़ जाती है	मोटर की गति रेटेड गति से कम हो जाएगी	A	3
37 What is the effect if the centrifugal switch is not disconnected after the motor starts?	Motor will run normally	Motor will stop immediately	Starting winding will burn out	Motor will run very slow speed	मोटर शुरू होने के बाद अपकेंद्री स्विच को डिस्कनेक्ट नहीं किया जाता है तो क्या प्रभाव पड़ता है?	मोटर सामान्य रूप से चलेगी	मोटर तुरंत बंद हो जाएगी	स्टाटिंग वाइंडिंग जल जायेगी	मोटर बहुत धीमी गति से चलेगी	С	3
38 How the direction of rotation of repulsion motors is to be reversed?	By shifting the brush- axis	By interchanging the supply terminals	By changing the main winding terminals	By changing the compensating winding terminals	प्रितिकर्षण मोटर्स के रोटेशन की दिशा को कैसे उल्टा करना है?	ब्रश-अक्ष को स्थानांतरित करके	आपूर्ति टर्मिनलों को आपस में बदल करके	मुख्य घुमावदार टर्मिनलों को बदलकर	कम्पन्सेटिंग वाइंडिंग टर्मिनलों को बदलकर	A	3
39 Why a capacitor is connected across centrifugal switch in the centrifugal switch speed control method?	To maintain constant speed	To protect from over loading	To improve the power factor	To reduce the sparks in contacts	क्यों एक संधारित्र अपकेंद्री स्विच गति नियंत्रण विधि में अपकेंद्री स्विच से जुड़ा हुआ है?	निरंतर गति बनाए रखने के लिए	ओवर लोडिंग से बचाने के लिए	पॉवर फैक्टर को बेहतर बनाने के लिए	संपर्कों में स्पार्क कम करने के लिए	D	3
What is the effect, if some slots in a split phase motor left out without winding after completion of concentric winding?	Works normally	Reduction in speed	Reduction in torque	Runs with very high speed	होने के बाद स्प्लिट फेज मोटर में कुछ स्लॉट बिना वाइंडिंग के छोड़े गए हैं?	सामान्य रूप से काम करता है	गति में कमी	टार्क में कमी	बहुत तेज गति से दौड़ता है	A	3
41 How the radio interference can be suppressed in centrifugal switch method of speed control of universal motor?	By connecting capacitor across centrifugal switch	By connecting capacitor in series with centrifugal switch	By adding compensating winding with armature	By connecting an inductor in series with centrifugal switch	सार्वभौमिक मोटर की गति नियंत्रण के अपकेंद्री स्विच विधि में रेडियो व्यतिकरण को कैसे दबाया जा सकता है?	अपकेंद्री स्विच के दोनों ओर संधारित्र जोड़कर	अपकेंद्री स्विच के साथ श्रेणी में संधारित्र को जोड़कर	कम्पन्सेटिंग वाइंडिंगको आर्मेचर के साथ जोड़कर	अपकेंद्री स्विच के साथ श्रेणी में एक इंडक्टर को जोड़कर	A	3

Question	OPT A	ОРТ В	OPT C	OPT D	Question	OPT A	ОРТ В	OPT C	OPT D	Ans	Leve
1 Which formula is used to calculate EMF/phase in a ideal alternator?	$E = \frac{\varphi \; FT}{2.22}$	$E \ = \ \frac{\varphi \ FT}{4.44}$	E = 2.22 φ FT	E = 4.44 φ FT	एक आदर्श अल्टरनेटर में EMF / फेज़ की गणना करने के लिए किस सूत्र का उपयोग किया जाता है?	$E = \frac{\phi \; FT}{2.22}$	$E = \frac{\varphi \; FT}{4.44}$	E = 2.22 ¢ FT	E = 4.44 ¢ FT	D	1
2 Which rule is used to find the direction of induced emf in an alternator?	Cork screw rule	Right hand palm rule	Fleming's left hand rule	Fleming's right hand rule	अल्टरनेटर में प्रेरित ईएमएफ की दिशा खोजने के लिए किस नियम का उपयोग किया जाता है?	कॉर्क स्क्रू नियम	दाहिने हाथ की हथेली का नियम	फ्लेमिंग के बाएं हाथ का नियम	फ्लीमेंग के दाहिने हाथ का नियम	D	1
3 What is the name of the part of alternator?	Stator	Exciter	Salient pole rotor	Smooth cylindrical rotor	अल्टरनेटर के भाग का नाम क्या है?	स्टेटर	उत्तेजक	मुख्य ध्रुव रोटर	चिकना बेलनाकार रोटर	С	1
4 What is the formula to calculate emf equation of an alternator?	$E = 4.44 \text{ K}_{d} \text{ K}_{c} \text{ T } \phi_{m}$	$E = 2.22 \text{ K}_{d} \text{ K}_{c} \text{ F} \phi_{m}$	$E = 4.44 \text{ K}_{d} \text{ K}_{c} \text{ FT } \phi_{r}$	_n E = 1.11 K _d K _c F φ _m	अल्टरनेटर के ईएमएफ समीकरण की गणना करने का सूत्र क्या है?	E = 4.44 K _d K _c T φ _m	$E = 2.22 \text{ K}_{d} \text{ K}_{c} \text{ F} \phi_{m}$	$E = 4.44 \text{ K}_d \text{ K}_c \text{ FT}$ ϕ_m	E = 1.11 K _d K _c F φ _m	С	1
5 How alternators are rated?	KVA	KW	MW	KV	अल्टरनेटर को कैसे रेटेड किया जाता है?	केवीए	किलोवाट	मेगावाट	के वी	Α	1
6 Which formula is used to calculate the percentage voltage regulation in alternator?	$\frac{V_{FL} - V_{NL}}{V_{FL}} \times 100$	$\frac{V_{NL} - V_{FL}}{V_{FL}} \times 100$	$\frac{V_{NL} - V_{FL}}{V_{NL}} \times 100$	$\frac{V_{FL} - V_{NL}}{V_{NL}} \times 100$	अल्टरनेटर में प्रतिशत वोल्टेज विनियमन की गणना करने के लिए किस सूत्र का उपयोग किया जाता है?	$\frac{V_{FL} - V_{NL}}{V_{NL}} \times 100$	$\frac{V_{NL} - V_{FL}}{V_{FL}} \times 100$	$\frac{V_{NL} - V_{FL}}{V_{NL}} \times 100$	$\frac{V_{FL} - V_{NL}}{V_{NL}} \times 100$	В	1
7 What is the supply frequency of an alternator having 6 poles runs at 1000 rpm?	25 Hz	40 Hz	50 Hz	60 Hz	1000 आरपीएम पर 6 ध्रुवों वाले एक अल्टरनेटर की आपूर्ति आवृत्ति क्या है?	25 हर्ट्ज	40 हर्ट्ज	50 हर्ट्ज	60 हर्देज	С	1
8 Calculate the speed of an alternator having 2 poles at a frequency of 50 Hz?	1500 rpm	2500 rpm	3000 rpm	6000 rpm	50 हर्ट्ज की आवृत्ति पर 2 ध्रुवाँ वाले एक अल्टरनेटर की गति की गणना करें?	1500 आरपीएम	2500 आरपीएम	3000 आरपीएम	6000 आरपीएम	С	2
9 What condition the lamps become dark in dark lamp method of parallel operation of two alternators?	Terminal voltages are equal	Voltage and frequency are equal	Voltage and power rating are equal	Frequency are same in both alternator	दो अल्टरनेटरों के समानांतर संचालन के डार्क लैंप विधि में लैंप किस स्थिति में बुझ जाते हैं?	टर्मिनल वोल्टेज बराबर हैं	वोल्टेज और आवृत्ति बराबर हैं	वोल्टेज और पावर रेटिंग बराबर हैं	दोनों अल्टरनेटर में आवृत्ति समान होती है	В	2
How to compensate de-magnetizing effect due to armature reaction in an alternator?	Reducing the speed of alternator	Reducing field excitation current	Increasing field excitation current	Increasing the speed of alternator	अल्टरनेटर में आमेचर प्रतिक्रिया के कारण डी-मैग्नेटाइजिंग प्रभाव की भरपाई कैसे करें?	अल्टरनेटर की गति को कम करना	फ़ील्ड उत्तेजना धारा को कम करना	फ़ील्ड उत्तेजना धारा में वृद्धि	अल्टरनेटर की गति बढ़ाना	С	2
11 What is the use of synchroscope?	Adjust the output voltage	Adjust the phase sequence	Adjust the supply frequency	Indicate the correct instant for paralleling	सिंक्रोस्कोप का उपयोग क्या है?	आउटपुट वोल्टेज को समायोजित करें	फेज़ अनुक्रम समायोजित करें	आपूर्ति आवृत्ति समायोजित करें	समानता के लिए सही तुरंत संकेत दें	D	2
What is the name of the equipment that provides D.C to the rotor of alternator?	Exciter	Inverter	Converter	Synchroniser	अल्टरनेटर के रोटर को D.C प्रदान करने वाले उपकरणों का नाम क्या है?	उत्तेजक	इन्वर्टर	कनवर्टर	सिंक्रोनाइज़र	A	2
13 What is the purpose of damper winding in alternator?	Reduces the copper loss	Reduces windage losses	Reduces the hunting effect	Improves the voltage regulation	अल्टरनेटर में डैम्पर वाइंडिंग का उद्देश्य क्या है?	तांबे के नुकसान को कम करता है	वायु हानि को कम करता है	हंटिंग के प्रभाव को कम करता है	वोल्टेज विनियमन में सुधार करता है	С	2
Which condition is to be satisfied before parallel operation of alternators?	Rating must be same	Phase sequence must be same	Rotor impedance must be same	Stator impedance must be same	अल्टरनेटर के समानांतर संचालन से पहले किस स्थिति को संतुष्ट किया जाना है?	रेटिंग समान होनी चाहिए	फेज़ अनुक्रम समान होना चाहिए	रोटर प्रतिबाधा समान होनी चाहिए	स्टेटर इम्पेडिंस समान होना चाहिए	В	2
15 What is the speed of an alternator connected with a supply frequency of 50 Hz at rated voltage having 4 poles?	1000 rpm	1500 rpm	3000 rpm	4500 rpm	4 पोल वाले रेटेड वोल्टेज पर 50 हर्ट्ज की आपूर्ति आवृत्ति के साथ जुड़े एक अल्टरनेटर की गति क्या है?	1000 आरपीएम	1500 आरपीएम	3000 आरपीएम	4500 आरपीएम	В	2

ŀ	What condition the two lamps become bright and one lamp dark during paralleling of two alternators?	Terminal voltages are equal	Voltages and frequencies are equal	Voltages and phase sequence are equal	Both the alternators receive same frequency	दो अल्टरनेटरों के समान्तर होने के दौरान दो लैंप किस हालत में जलते हैं और एक लैंप बुझ जाता है?	टिमिनल वोल्टेज बराबर हैं	वोल्टेज और फ्रिकेंसी बराबर हैं	वोल्टेज और फेज़ अनुक्रम बराबर हैं	दोनों अल्टरनेटर समान आवृत्ति प्राप्त करते हैं	В	2
l	What causes the terminal voltage of an alternator reduces, if the load increases?	Field resistance	Armature reaction	Inductive reactance	Armature resistance	यदि भार बढ़ता है, तो अल्टरनेटर का टर्मिनल वोल्टेज कम हो जाता है?	क्षेत्र प्रतिरोध	आमैचर प्रतिक्रिया	प्रेरक प्रतिक्रिया	आमेचर प्रतिरोध	D	2
	What is the purpose of using damper winding in AC generator?	Prevents heating	Reduces copper loss	Reduces windage loss	Prevents the hunting effect	AC जनरेटर में डैम्पर वाईडिंग का उपयोग करने का उद्देश्य क्या है?	हीटिंग को रोकता है	तांबे के नुकसान को कम करता है	नुकसान को कम करता है	हंटिंग के प्रभाव को रोकता है	D	2
19 \	What is the type of alternator? MAIN ARMATURE EXCITER PIELD MAIN ARMATURE MAIN ARMATURE MAIN ARMATURE	Brushless alternator	Three phase alternator	Single phase alternator	Salient pole type alternator	अल्टरनेटर का प्रकार क्या है?	ब्रश रहित अल्टरनेटर	तीन फेज़ अल्टरनेटर	एकल फेज़ अल्टरनेटर	सेलियंट ध्रुव प्रकार अल्टरनेटर	A	2
	Calculate the speed in r.p.s of the 2 pole, 50Hz alternator?	50 rps	100 rps	1500 rps	3000 rps	2 पोल, 50Hz अल्टरनेटर के r.p.s में गति की गणना करें?	50 आरपीएस	100 आरपीएस	1500 आरपीएस	3000 आरपीएस	Α	2
	What is the advantage of using rotating field type alternator?	Easy to locate the faults in the field	Easy to connect the load with alternator	Easy to dissipate the heat during running	Two slip rings only required irrespective of No. of phases	घूर्णन क्षेत्र प्रकार अल्टरनेटर का उपयोग करने का क्या फायदा है?	क्षेत्र में दोष का पता लगाना आसान है	अल्टरनेटर के साथ लोड को कनेक्ट करना आसान है	दोड़ने के दोरान गर्मी को फैलाना आसान	दो स्लिप रिंगों की आवश्यकता होती है, चाहे फेज़ों की संख्या कितनी भी हो	D	2
	What is the effect in increasing the field excitation current in alternator?	Prevents demagnetizing	Over voltage protection	Dead short circuit protection	Alternator will be over loaded	अल्टरनेटर में फ़ील्ड उत्तेजना धारा को बढ़ाने से क्या प्रभाव पड़ता है?	विचलन को रोकता है	अधिक वोल्टता से संरक्षण	मृत शॉर्ट सिकेट संरक्षण	अल्टरनेटर ओवर लोडेड होगा	A	2
\	Calculate the pitch factor (K_P) for a winding having 36 stator slots 4 pole with angle (α) is 30° in alternator?	0.942	0.965	0.978	0.985	अल्टरनेटर में 30° कोण (α) के साथ 36 स्टेटर स्लॉट 4 पोल वाले घुमावदार के लिए पिच फैक्टर (KP) की गणना करें?	0.942	0.965	0.978	0.985	В	3
	What is the cause for hunting effect in alternators?	Due to over load	Running without load	Running with fluctuation of speed	Due to continuous fluctuation in load	अल्टरनेटर में हंटिंग के प्रभाव का कारण क्या है?	अधिक भार के कारण	बिना लोड के चल रहा है	गति के उतार-चढ़ाव के साथ चल रहा है	लोड में निरंतर उतार- चढ़ाव के कारण	D	3
I f	Calculate the voltage regulation in percentage if the load is removed from an alternator, the voltage rises from 480V to 660V?	27.2%	32.5%	37.5%	38.5%	यदि एक अल्टरनेटर से लोड हटा दिया जाता है, तो वोल्टेज 480V से 660V तक बढ़ जाता है, वोल्टेज विनियमन प्रतिशत में गणना कीजिये?	27.2%	32.5%	37.5%	38.5%	С	3

Question	OPT A		OPT C	OPT D	NSQF - Module 6 - Synchronous Motor Question	OPT A	OPT B	OPT C	OPT D	Ans	Levels
Question	OFT A	OF I B	OF I C	OF 1 B	Question	OF LA	OFTB	OF 1 C	OF I B	Alls	Levels
1 What is the name of the converter?	Metal rectifier	Rotary converter	Mercury arc rectifier	Silicon controlled rectifier	कन्वटेर का नाम क्या है?	धातु दिष्टकारी	रोटरी कनवरेर	मरकरी आके दिष्टकारी	सिलिकॉन नियंत्रित दिष्टकारी	D	1
3 PHASE AC VARIABLE TO VOLTAGE POWER (1)											
2 What is the name of the converter?	Metal rectifier	Rotary converter	Mercury arc rectifier	Motor-Generator set	कन्वर्टर का नाम क्या है?	धातु दिष्टकारी	रोटरी कनवर्टर	मरकरी आर्क दिष्टकारी	मोटर-जनरेटर सेट	В	1
S. PIVABLE STATE OLIV SLIP-PRIGIS STATE OLIV STATE											
3 Why D.C supply is necessary for synchronous motor operation?	Reduce the losses	Start the motor initially	Run the motor with over load	Run the motor at synchronous speed	सिंक्रोनस मोटर ऑपरेशन के लिए D.C आपूर्ति क्यों आवश्यक है?	हानियों को कम करें	शुरू में मोटर स्टार्ट करें	मोटर को ओवर लोड के साथ चलाएं	मोटर को तुल्यकालिक गति से चलाएं	D	2
4 Which acts as both inverter and converter?	Metal rectifier	Mercury arc rectifier	Semi conductor diode	Synchronous converter	जो इन्वरेर और कनवरेर दोनों के रूप में कार्य करता है?	धातु दिष्टकारी	मरकरी आर्क दिष्टकारी	अर्धचालक डायोड	तुल्यकालिक कनवर्टर	D	2
5 What is the function of inverter?	Convert A.C to D.C	Convert D.C to A.C	Smoothening A.C	Convert pulsating	इन्वरेर का कार्य क्या है?	A.C को D.C में बदलना	D.C को A.C में बदलना		Pulsating DC को शुद्ध D.C में बदलें	В	2
			sine wave	DC into pure D.C				स्मूथ करना	शुद्ध D.C में बदलें		
6 Which converting device can be over loaded?	Rectifier unit	Rotary converter	Motor generator set	Mercury arc rectifier	कोन सा परिवर्तक उपकरण ओवर लोड किया जा सकता है?	दिष्टकारी यूनिट	रोटरी कनवटेर	मोटर जनरेटर सेट	मरकरी आर्क दिष्टकारी	А	2
7 Why exciter is essential to run a synchronous motor?	Carry more load in motor	Improve the power factor	Reduce the losses in motor	Run the motor at synchronous speed	सिंक्रोनस मोटर को चलाने के लिए उत्तेजक क्यों आवश्यक है?	मोटर में अधिक भार ले जाएं	पावर फैक्टर में सुधार	मोटर में होने वाले नुकसान को कम करें	मोटर को तुल्पकालिक गति से चलाएं	D	2
8 Which application requires only DC?	Electroplating	Stepping up of voltage	Operating induction motor	Operating repulsion motor	किस एप्लिकेशन को केवल डीसी की आवश्यकता है?	विद्युत लेपन	वोल्टेज बढ़ाना	इंडक्शन मोटर प्रचालन	प्रतिकर्षण मोटर प्रचालन	I A	2
9 Why the LED's are avoided as converters in rectifier diodes?	Heavily doped device	Very low power device	Designed for light emitting	Very sensitive to temperature	दिष्टकारी डायोड में एलईडी को कन्वर्टर्स के रूप में क्यों टाला जाता है?	अधिक डोप्ड युक्ति	बहुत कम शक्ति युक्ति	प्रकाश उत्सर्जन के लिए बनाया गया है	तापमान के प्रति बहुत संवेदनशील	В	2
10 Which is the main application of synchronous motor?	Elevators	Paper rolling mills	AC to DC converter	Power factor correction device	सिंक्रोनस मोटर्स का मुख्य अनुप्रयोग कौन सा है?	लिफ्ट	कागज रोलिंग मिलीं	एसी से डीसी कनवरेर	पावर फैक्टर करेक्शन डिवाइस	D	2
11 What is the advantage of motor generator set?	Noiseless	High efficiency	Low maintenance required	DC output voltage can be easily controlled	मोटर जनरेटर सेट का लाभ क्या है?	शोरहीन	उच्च दक्षता	कम रखरखाव की आवश्यकता है	डीसी आउटपुट वोल्टेज को आसानी से नियंत्रित किया जा सकता है	D	2
What is the function of the part marked as 'X' of the rotary converter?	Converts AC to DC	Reduces voltage drop	Helps to deliver without noise	Collects the delivered direct current	रोटरी कनवर्टर के भाग 'X' का क्या कार्य है?	एसी को डीसी में परिवर्तित करता है	वेल्टिज ड्रॉप को कम करता है	बिना शोर के आउटपुट देने में मदद करता है	वितरित प्रत्यक्ष धारा एकत्र करता है	D	2

1:	What is the purpose of damper winding in a synchronous motor at starting?	Produce high voltage to initiate the rotation	Produce high current to start rotate the motor	Produces torque and runs near in synchronous speed	Produce a high magnetic-field to maintain a constant speed	शुरू में एक तुल्यकालिक मोटर में डैम्पर वाइंडिंग का उद्देश्य क्या है?	रेटिशन शुरू करने के लिए उच्च वोल्टेज का उत्पादन करें	मोटर को घुमाने के लिए उच्च धारा का उत्पादन करें	टोक़ पैदा करता है और तुल्यकालिक गति में पास चलता है	एक नियत गति बनाए रखने के लिए एक उच्च चुंबकीय-क्षेत्र का निर्माण करें	D	2
14	Why the synchronous motor fails to run at synchronous speed?	Insufficient excitation	Defective pony motor	Open in damper winding	Short in damper winding	सिंक्रोनस मोटर सिंक्रोनस गति से क्यों नहीं चलती?	अपर्याप्त उत्तेजना	दोषपूर्ण पोनी मोटर	खुली डैम्पर वाइंडिंग	डेपर वाइंडिंग में शॉर्ट	Α	3
1	How the synchronous motor is used as a synchronous condenser?	Varying the motor load	Varying the rotor excitation	Varying stator voltage in motor	Varying stator current in motor	सिंक्रोनस मोटर को सिंक्रोनस कंडेनसर के रूप में कैसे उपयोग किया जाता है?	मोटर लोड में बदलाव	रोटर उत्तेजना में बदलाव	मोटर में स्टेटर वोल्टेज में बदलाव	मोटर में स्टेटर धारा में बदलाव	В	3
10	What is the function of damper windings in synchronous motor?	Maintain power factor	Excite the field winding	Maintain constant speed	Start the synchronous motor	तुल्यकालिक मोटर में डैम्पर वाइंडिंग्स का क्या कार्य है?	पाँवर फैक्टर बनाए रखें	फ़ील्ड वाइंडिंग को उत्तेजित करें	नियत गति बनाए रखें	सिंक्रोनस मोटर शुरू करें	D	3
1	Which converter is having high efficiency?	SCR converter	Rotary converter	Motor generator set	Mercury arc rectifier	कौन से कनवर्टर में उच्च दक्षता है?	SCR कनवटेर	रोटरी कनवर्टर	मोटर जनरेटर सेट	मरकरी आर्क दिष्टकारी	A	3
18	How synchronous motor works as a power factor corrector?	Varying the line voltage	Varying the field excitation	Increasing the speed of motor	Decreasing the speed of motor	कैसे तुल्यकालिक मोटर पावर फैक्टर सुधारक के रूप में काम करता है?	लाइन वोल्टेज में बदलाव	फ़ील्ड उत्तेजना में बदलाव	मोटर की गति बढ़ाना	मोटर की गति घटाना	В	3